Как образуется пар в водной среде. Газообразное состояние воды - свойства, примеры

Водяной пар — газовая фаза воды

Водяной пар образуется не только, . Этот термин применим и к туману.

Туман — это пар, который становится видимым из-за капелек воды, которые образуются в присутствии охладителя воздуха — пар конденсируется.

При более низких давлениях, например, в верхних слоях атмосферы или в верхней части высоких гор, вода кипит при более низкой температуре, чем номинальная 100 ° C (212 ° F). При нагревании в дальнейшем становится перегретым паром.

Как газ, водяной пар может содержать только определенное количество водяного пара (количество зависит от температуры и давления).

Пар-жидкость равновесие является состоянием, при котором жидкость и пар (газовая фаза) находятся в равновесии друг с другом, это такое состояние, когда скорость испарения (жидкие изменения в пар) равна скорости конденсации (превращения пара в жидкость) на молекулярном уровне, что в целом означает взаимопревращения «пар-вода» . Хотя в теории равновесия можно достичь в относительно замкнутом пространстве, соотносятся в контакте друг с другом достаточно долго без каких-либо помех или вмешательств извне. Когда газ поглотил свое максимальное количество, он, как говорят, находится в жидком паровом равновесии, но если в нем больше воды, он описывается как ‘влажный пар’.

Вода, водяной пар и их свойства на Земле

  • полярных шапок льда на Марсе
  • Титан
  • Европа
  • Кольца Сатурна
  • Энцелад
  • Плутон и Харон
  • Кометы и кометы источником населения (пояса Койпера и облаком Оорта объектов).

Вода-лед может присутствовать на Церере и Тетис. Вода и другие летучие вещества, вероятно, составляют большую часть внутренних структур Урана и Нептуна и воды в глубокие слои могут быть в виде ионной воды, в которой молекулы распадаются на суп из водорода и ионы кислорода, и глубже, как суперионные воды, в которой кислород кристаллизуется, но ионы водорода плавают свободно в пределах кислорода решетки.

Некоторые из полезных ископаемых Луны содержат молекулы воды. Например, в 2008 году лаборатории устройство, которое собирает и определяет частицы, обнаружены небольшие количества соединений, внутри вулканического жемчуга, привезенного с Луны на Землю Аполлон-15 экипаж в 1971 году. НАСА сообщили об обнаружении молекул воды НАСА Луна минералогии Mapper на борту Чандраян-1 корабля Индийской организации космических исследований в сентябре 2009 года.

Области применения пара

Пар используется в широком спектре отраслей промышленности. Общие приложения для пара, например, связаны с паровым обогревом процессов на фабриках и заводах и на паровых приводных турбинах на электростанциях…

Вот некоторые типичные приложения для пара в промышленности: Отопление / Стерилизация, Движение / привод, Распыление, Очистка, Увлажнение…

Связь воды и пара, давления и температуры

Насыщение (сухого) пара результат процесса, когда вода нагревается до температуры кипения, а затем испаряется с дополнительным выделением тепла (скрытое отопление).

Если эта пара затем дополнительно нагревается выше точки насыщения, пар становится перегретым паром (фактическое отопление).

Насыщенный пар

Насыщенный пар образуется при температурах и давлениях, где пар (газ) и вода (жидкость) могут сосуществовать. Другими словами, это происходит, когда скорость испарения воды равна скорости конденсации.

Преимущества использования насыщенного пара для отопления

Насыщенный пар обладает многими свойствами, которые делают его отличным источником тепла, особенно при температуре 100 ° C (212 ° F) и выше.

Влажный пар

Это наиболее распространенная форма пара, которую на самом деле испытывает на себе большинство растений. Когда пар произведен, используя котел, он обычно содержит влажность от невыпаренных молекул воды, которые перенесены в распределенный пар. Даже самые лучшие котлы могут распустить пар, содержащий от 3% до 5% влажности. Когда вода подходит к состоянию насыщения и начинает испаряться, немного воды, как правило, оседает в виде тумана или капель. Это одна из ключевых причин, почему образуется конденсат из распределенных пар.

Перегретый пар

Перегретый пар создается при дальнейшем нагревании влажного или насыщенного пар вне точки насыщенного пара. Это дает пар, который имеет более высокую температуру и низкую плотность, чем у насыщенного пара при том же давлении. Перегретый пар используется в основном в двигателе / ??приводе турбины, и обычно не используется для теплопередачи.

Сверхкритическая вода

Сверхкритическая вода есть вода в состоянии, которое превышает его критическую точку: 22.1MPa, 374 ° C (3208 PSIA, 705 ° F). В критической точке, скрытая теплота пара равна нулю, а его удельный объем точно такой же, будь то жидкое или газообразное состояние. Иными словами, вода, которая находится при более высоком давлении и температуре, чем критическая точка, находится в неразличимом состоянии, которое не является ни жидкостью, ни газом.

Сверхкритических вода используется для привода турбин на электростанциях, которые требуют более высокой эффективности. Исследование сверхкритической воды выполняется с акцентом на его использование в качестве жидкости, которая имеет свойства как жидкости, так и газа, и в частности о его пригодности в качестве растворителя для химических реакций.

Различные состояния Воды

Ненасыщенные воды

Это вода в ее наиболее узнаваемом состоянии. Около 70% веса человеческого тела из воды. В жидком виде вода имеет устойчивые водородные связи в молекуле воды. Ненасыщенные воды относительно компактные, плотные, и стабильные структуры.

Насыщенный пар

Насыщенные молекулы пара невидимы. Когда насыщенный пар поступает в атмосферу, будучи вентилируемый из трубопроводов, часть его конденсируется, передавая свое тепло окружающему воздуху, и образуются клубы белого пара (крошечные капельки воды). Когда пар включает в себя эти крошечные капельки, это называется влажным паром.

В паровой системе, паровые потоки, идущие от конденсатоотводчиков часто неправильно называют насыщенными парами, в то время как это на самом деле пар вторичного вскипания. Разница между ними состоит в том, что насыщенный пар невидим сразу на выходе из трубы, в то время как облако пара содержит видимые капли воды, которые мгновенно в нем образуются.

Перегретый пар

Перегретый пар не будет конденсироваться, даже если он вступает в контакт с атмосферой и на него воздействуют перепады температуры. В результате, облака пара не образуются.

Перегретый пар сохраняет больше тепла, чем насыщенный пар при том же давлении, и движение его молекул происходит быстрее, поэтому он имеет более низкую плотность (т. е. его удельный объем больше).

Сверхкритическая вода

Хотя не возможно сказать визуальным наблюдением, это — вода в форме, которая не является ни жидкой, ни газообразной. Общее представление имеет молекулярное движение, которое является близко к тому из газа, и плотности, которая ближе к той из жидкости.

Хотя нельзя сказать, путем визуального наблюдения, это вода в какой форме, она не является ни жидкой, ни газообразной. Общее представление имеет молекулярное движение, близкое к газу, а плотность такой воды ближе к жидкости.

Для окружающей нас природы водяной пар имеет огромное значение. Он присутствует в атмосфере, используется в технике, служит неотъемлемой составной частью процесса происхождения и развития жизни на Земле.

В учебниках физики говорится, что водяной пар - это Его может наблюдать каждый, поставив чайник на огонь. Через некоторое время из его носика начинает вырываться струя пара. Обусловлено такое явление тем, что вода может находиться в разных, как определяют физики, агрегатных состояниях - газообразном, твердом, жидком. Такие свойства воды и объясняют ее всеобъемлющее присутствие на Земле. На поверхности - в жидком и твердом состоянии, в атмосфере - в газообразном.

Такое свойство воды и последовательный переход ее в разные состояния создают в природе. Жидкость испаряется с поверхности, поднимается в атмосферу, переносится в другое место в виде водяного пара и там выпадает в виде дождя, обеспечивая необходимой влагой новые места.

По сути дела, работает своеобразная паровая машина, источником энергии для которой является Солнце. При рассмотренных процессах водяной пар дополнительно обогревает планету благодаря отражению им теплового излучения Земли обратно к поверхности, вызывая парниковый эффект. Если бы не было такой своеобразной «подушки», то температура на поверхности планеты была бы на 20°С ниже.

В качестве подтверждения изложенного можно вспомнить о солнечных днях зимой и летом. В теплое время года высокая, и атмосфера, как в парнике, согревает Землю, зимой же в солнечную погоду бывают порой самые значительные холода.

Как и все газы, водяной пар обладает определенными свойствами. Одним из параметров, определяющим таковые, будет плотность водяного пара. По определению, это количество водяного пара, содержащегося в одном кубическом метре воздуха. По сути, так определяется последнего.

Количество в воздухе воды постоянно меняется. Оно зависит от температуры, от давления, местности. Содержание влаги в атмосфере - чрезвычайно важный для жизни параметр, и за ним постоянно наблюдают, для чего пользуются специальными приборами - гигрометром и психрометром.

Изменение влажности вызвано тем, что содержание воды в окружающем пространстве изменяется из-за процессов испарения и конденсации. Конденсация - это явление, обратное испарению, в данном случае пар начинает превращаться в жидкость, и она выпадает на поверхность.

При этом в зависимости от окружающей температуры может образоваться туман, роса, иней, гололед.

Когда теплый воздух, воды, соприкасается с холодной землей, образуется роса. В зимнее время, при отрицательных температурах, будет образовываться иней.

Немного другой эффект происходит, когда приходит холодный, или начинает охлаждаться нагретый за день воздух. В этом случае образуется туман.

Если температура поверхности, на которую конденсируется пар, отрицательная, то возникает гололед.

Таким образом, многочисленные природные явления, такие, как туман, роса, иней, гололед, обязаны своим образованием водяному пару, содержащемуся в атмосфере.

В этой связи стоит упомянуть об образовании облаков, которые тоже самым непосредственным образом участвуют в формировании погоды. Вода, испаряясь с поверхности и превращаясь в водяной пар, поднимается вверх. При достижении высоты, где начинается конденсация, она превращается в жидкость, и происходит образование облаков. Они могут быть нескольких типов, но в свете рассматриваемого вопроса важно, что они участвуют в создании парникового эффекта и переносе влаги в новые места.

В изложенном материале показано, что собой представляет водяной пар, описано его влияние на жизненные процессы, происходящие на Земле.

Тема 2. Основы теплотехники.

Теплотехника - это наука, изучающая методы получения, преобразования, передачи и использования теплоты. Тепловая энергия получается при сжигании органических веществ, называемых топливом.

Основы теплотехники составляют:

1. Термодинамика - наука, изучающая превращение энергии тепла в другие виды энергии (например: тепловая энергия в механическую, хими­ческую и т. д.)

2. Теплопередача - изучает теплообмен между двумя теплоносите­лями через поверхность нагрева.

Рабочим телом является теплоноситель (водяной пар или горячая вода), который способен передавать теплоту.

В котельной теплоносителем (рабочим телом) является горячая вода и водяной пар с температурой 150°С или водяной пар с температурой до 250°С. Для отопления жилых и обще­ственных зданий используется горячая вода, это связано, с санитарно-гигиеническими условиями, возможностью легкого изменения ее темпера­туры в зависимости от температуры наружного воздуха. Вода обладает значительной плотностью по сравнению с паром, что позволяет передавать на большие расстояния значительное количество тепла при небольшом объеме теплоносителя. В систему отопления зданий вода подается с тем­пературой не выше 95°С во избежание пригорания пыли на приборах ото­пления иожогов от систем отопления. Пар используется для отопления промышленных зданий и в производственно-технологических системах.

Параметры рабочего тела

Теплоноситель, получая или отдавая тепловую энергию, изменяет свое состояние.

Например: Вода в паровом котле нагревается, превращается в пар, ко­торый имеет определенную температуру и давление. Пар поступает в па­роводяной подогреватель, сам охлаждается, превращается в конденсат. Температура нагреваемой воды увеличивается, температура пара и конден­сата понижается.

Основными параметрами рабочего тела являются температура, давление, удельный объем, плотность.

t, P- определяется приборами: манометрами, термометрами.

Удельный объем и плотность является расчетной величиной.

1. Удельный объем - объем занимаемый единицеймассы вещества при

0°С и атмосферном давлении 760 мм.рт.ст. (при нормальных условиях)

где: V- объем (м 3); m- масса вещества (кг); стандартное условие: Р=760мм р.ст. t=20 о С

2. Плотность - отношение массы вещества к его объему. каждое вещество имеет свою плотность:

В практике применяется относительная плотность – отношение плотности данного газа к плотности стандартного вещества (воздуха) при нормальных условиях (t° = 0°С: 760 мм. рт.ст.)

Сравнивая плотность воздуха с плотностью метана, мы можем определить из каких мест брать пробу на наличие метана.

получаем,

газ легче воздуха, значит, он заполняет верхнюю часть любого объема, проба берется из верхней части топки котла, колодца, камер, помещения. Газоанализаторы устанавливаются в верхней части помещений.

(мазут легче, занимает верхнюю часть)

Плотность угарного газа почти, такая как у воздуха, поэтому проба на угарный газ берется в 1.5 метров от пола.

3. Давление - эта сила, действующая на единицу площади поверхности.

Давление силы, равной 1Н, равномерно распределенное на поверх­ности 1м 2 принято за единицу давления и равно 1Па (Н/м 2) в системе СИ (сейчас в школах, в книгах все идет в Па, приборы тоже стали в Па).

Величина Па мала по значению, пример: если взять 1 кг воды разлить на 1 метр получаем 1 мм.в.ст. ,поэтому вводятся множители и приставки- МПа, КПа…

В технике применяются более крупные единицы измерения

1кПа=10 3 Па; 1МПа=10 б Па; 1ГПа=10 9 Па.

Вне системные единицы измерения давления кгс/м 2 ; кгс/см 2 ;мм.в.ст;мм.р.ст.

1 кгс/м 2 = 1 мм.в ст =9,8 Па

1 кгс/см 2 = 9,8 . 10 4 Па ~ 10 5 Па = 10 4 кгс/м 2

Давление не редко измеряют в физических и технических атмосферах.

Физическая атмосфера - среднее давление атмосферного воздуха на уровне моря при н.у.

1атм = 1,01325 . 10 5 Па = 760 мм рт.ст. = 10,33 м вод. ст = 1,0330 мм в. ст. = 1,033 кгс/ см 2 .

Техническая атмосфера- давление вызываемое силой в 1кгс равномерно распределенное по нормальной к ней поверхности площадью в 1см 2 .

1ат = 735 мм рт. ст. = 10 м. в. ст. = 10.000 мм в. ст. = =0,1 МПа= 1 кгс/см 2

1 мм в. ст. - сила, равная гидростатическому давлению водяного сто­лба высотой в 1 мм на плоское основание 1мм в. ст = 9,8 Па.

1 мм. рт. ст - сила, равная гидростатическому давлению столба ртути высотой 1 мм на плоское основание. 1 мм рт. ст. = 13,6 мм. в. ст.

В технических характеристиках насосов вместо давления употреб­ляется термин напор. Единицей измерения напора является м. вод. ст. Например: Напор создаваемый насосом равен 50 м вод. ст. это значит, он может поднять воду на высоту 50 м.

Виды давления : избыточное, вакуум (разрежение, тяга), абсолютное, атмосферное .

Если стрелка отклоняется в строну большую нуля то это избыточное давление, в меньшую – разряжение.

Абсолютное давление:

Р абс =Р изб +Р атм

Р абс =Р вак +Р атм

Р абс =Р атм -Р разр

где: Р атм =1 кгс/см 2

Атмосферное давление - среднее давление атмосферного воздуха на уровне моря при t° = 0°С и нормальном атмосферном Р =760 мм. рт. ст.

Избыточное давление - давление выше атмосферного (в замкнутом объеме). В котельных под избыточным давлением находятся вода, пар в котлах и трубопроводах. Р изб. измеряется приборами манометрами.

Вакуум (Разрежение) - давление в замкнутых объемах меньше атмосферного (вакуум). Топки и дымоходы котлов находятся под разрежением. Разрежение измеряется приборами тягомерами.

Абсолютное давление - избыточное давление или разрежение с уче­том атмосферного давления.

По назначению давление бывает:

1). Русловное - наибольшее давление при t=20 o С

2). Ррабочее – максимально избыточное давление в котле, при котором обеспечивается длительная работа котла при нормальных условиях эксплуатации (указывается в производственной инструкции).

3). Рразрешенное - максимально допустимое давление, установленное по результатам технического освидетельствования или контрольного расчета на прочность.

4). Ррасчетное – максимально избыточное давление, на котором производится расчет прочность элементов котла.

5). Рпробное - избыточное давление, при котором производят гидравлические испытания элементов котла на прочность и плотность (один из видов технического освидетельствования).

4. Температура - это степень нагретости тела, измеряется в градусах. Определяет направление самопроизвольной передачи тепла от более нагретого к менее нагретому те­лу.

Передача тепла будет иметь место до того момента пока температуры не станут равными, т. е. наступит температурное равновесие.

Используются две шкалы: международная - Кельвина и практическая Цельсия t °С.

За ноль в этой шкале принята температура плавления льда, за сто градусов – температура кипения воды при атм. давлении (760 мм рт. ст.).

За начало отсчета в термодинамической шкале температур Кельвина применят абсолютный нуль (низшая теоретически возможная температура, при которой отсутствует движение молекул). Обозначается Т.

1 Кельвин по величине равен 1° шкалы Цельсия

Температура таяния льда равна 273К. Температура кипения воды равна 373К

Т=t + 273; t = T-273

Температура кипения зависит от давления.

Например, При Р аб c = 1,7 кгс/см 2 . Вода кипит при t = 115°С.

5. Теплота - энергия, которая может передаваться от более нагретого те­ла к менее нагретому.

В системе СИ единицей измерения теплоты и энергии является Джоуль (Дж). Внесистемная единица измерения теплоты - калория (кал.).

1 кал. - количество теплоты необходимое для нагрева 1 г Н 2 О на 1°С при

Р = 760 мм. рт.ст.

1 кал. =4,19Дж

6.Теплоемкость способность тела поглощать теплоту. Для того чтобы два различных вещества с одинаковой массой нагреть до одинаковой температуры, нужно затратить различное количество теплоты.

Удель­ная теплоемкость воды – количество тепла которое необходимо сообщить единицей вещества чтобы повысить его t на 1°С, равна 1 ккал/кг град.

Способы передачи теплоты.

Различают, три способа переноса теплоты:

1.теплопроводность;

2.излучение (радиация);

3.конвекция.

Теплопроводность-

Перенос теплоты вследствие теплового движе­ния молекул, атомов и свободных электронов.

Каждое вещество имеет свою теплопроводность, она зависит от хими­ческого состава, структуры, влажности материала.

Количественной характеристикой теплопроводности является коэф­фициент теплопроводности этоколичество теплоты, передаваемые через единицу поверхности нагрева в единицу времени при разности t в о С и толщине стенки в 1 метр.

Коэффициент теплопроводности ( ):

Медь = 330 ккал . м/м 2. ч . град

Чугун = 5 4 ккал . м/м 2. ч . град

Сталь =39 ккал . м/м 2. ч . град

Видно что: хорошей теплопроводностью обладают металлы, лучше всего медь.

Асбест =0,15 ккал . м/м 2. ч . град

Сажа =0,05-0, ккал . м/м 2. ч . град

Накипь =0,07-2 ккал . м/м 2. ч . град

Воздух =0,02 ккал . м/м 2. ч . град

Слабо проводят теплоту пористые тела (асбест, сажа, накипь).

Сажа затрудняет передачу тепла от топочных газов к стенке котла (проводит тепло хуже стали в 100 раз), что приводит к перерасходу топлива, снижению выработки пара или горячей воды. При наличии сажи повышается температура уходящих газов. Все это ведет и уменьшению КПД котла. При работе котлов ежечасно по приборам (логометр) контролируется t ух.газов, значения которых указаны в режимной карте котла. Если t ух.газов повысилась то производится обдувка поверхности нагрева.

Накипь образуется внутри труб (в 30-50 раз хуже проводит тепло, чем сталь), тем самым уменьшает теплопередачу от стенки котла к воде, в резуль­тате стенки перегреваются, деформируются, разрываются (разрыв труб котла). На­кипь в 30-50 раз хуже проводит тепло, чем сталь

Конвекция -

Перенос теплоты перемешиванием или перемещением частиц между собой (характерна только для жидкостей и газов). Различают конвекцию естественную и принудительную.

Естественная конвекция - свободное движение жидкости или газов за счет разности плотностей неравномерно нагретых слоев.

Принудительная конвекция - вынужденное движение жидкости или газов за счет давления или разрежения, создаваемых насосами, дымосо­сами и вентиляторами.

Способы увеличения конвективного теплообмена:

§ Увеличение скорости потока;

§ Турбулизация (завихрение);

§ Увеличение поверхности нагрева (за счет установки ребер);

§ Увеличение разности температур между греющей и нагреваемой средами;

§ Противоточное движение сред (противоток) .

Излучение (радиация)-

Теплообмен между телами находящимися на расстоянии друг от друга за счет лучистой энергии, носителями которой являются электромагнитные колебания: происходит превращение тепловой энергии в лучистую и наоборот, из лучистой в тепловую.

Излучение наиболее эффективный способ передачи теплоты, особенно если изучающее тело имеет высокую температуру, а лучи на­правлены перпендикулярно к нагреваемой поверхности.

Для улучшения теплообмена излучением в топках котлов выкладываются из огнеупорных материалов специальные щели, которые одновременно являются излучателями теплоты и стабилизаторами горения.

Поверхность нагрева котла – поверхность, с которой с одной стороны омывается газами с другой стороны водой.

Рассмотренные выше 3 вида теплообмена в чистом виде встреча­ются редко. Практически один вид теплообмена сопровождается другим. В котле присутствуют все три вида теплообмена, который называется сложным теплообменом.

В топке котла:

А) от факела горелки к внешней поверхности труб котла- излучением.

Б) от образующихся дымовых газов к стенке –конвекцией

В) от внешней поверхности стенки трубы к внутренней- теплопроводностью.

Г) от внутренней поверхности стенки трубы к воде, циркуляцией вдоль поверхности – конвекцией.

Перенос теплоты от одной среды к другой через разделительную стенку называется теплопередачей.

Вода, водяной пар и его свойства

Вода простейшая устойчивая в обычных условиях химическое соединение водорода с кислородом, наибольшая плотность воды 1000кг/м 3 при t=4 о С.

Вода, как и всякая жидкость, подчиняется гидравлическим законам. Она почти не сжимается, поэтому обладает способностью передавать давление, оказываемое на нее во все стороны с одинаковой силы. Если несколько сосудов разной формы соединить между собой, то уровень воды будет одинаковый везде (закон сообщающихся сосудов).

Ты, конечно, замечал, если выйти из речки и не обтираться полотенцем, то через некоторое время твоя кожа станет сухой.

Это говорит о том, что вода с поверхности твоего тела испарилась. Процесс испарения представляет собой переход жидкого состояния воды в парообразное. Ты можешь наблюдать это явление в природе повсеместно.

Испарение постоянно происходит с поверхностного слоя морей и океанов, влажных предметов (например, когда ты протираешь школьную доску мокрой тряпкой).

Для всех живых существ и растений тоже свойственен процесс испарения. Благодаря этому явлению живые организмы способны регулировать температуру своего тела. Ты, наверняка, замечал, что вода с поверхности тела испаряется быстрее, если на улице ветрено или ярко светит солнышко.

Действительно, при повышении температуры и наличии ветра испарение происходит интенсивней, поэтому летом лужи высыхают быстрее, чем осенью. Зимой этот процесс и вовсе замедляется, но не останавливается. Даже мокрое белье, вывешенное на улицу и покрытое коркой льда, все равно станет сухим. Процесс испарения даже при таких условиях все равно продолжается. При температуре +100°С жидкое состояние воды благодаря кипению переходит в парообразное. В этот момент наблюдается самый активный процесс испарения.

Образовавшийся пар с поверхности земли начинает подниматься. Ты ведь знаешь, что теплый воздух гораздо легче холодного, поэтому он и начинает подниматься, устремляясь ввысь. Но с увеличением высоты температура воздуха резко начинает снижаться, и водяной охлаждается, образуя мелкие капельки воды. Так возникают облака, которые ты можешь каждый день наблюдать на небе. В их состав могут входить многочисленные капельки воды. Это водяные облака. В некоторых из них могут присутствовать мелкие кристаллы. Такие облака называют ледяными. А если в составе наблюдаются и капельки воды и кристаллы, то они являются смешанными. Ледяные облака образуются на самых больших высотах.

Процесс образования капель воды из пара является обратным процессу испарения, он получил название - конденсация (от латинского - "сгущение"). В природе этот процесс ты можешь наблюдать при выпадении росы и возникновении туманов.

Явление конденсации активно применяют и в фармакологии. Таким образом очищают воду, которая используется при лабораторных исследованиях и в изготовлении лекарств. Процесс состоит из трех этапов: воду преобразуют в пар, пар вновь переходит в жидкое состояние, а образовавшиеся капли собирают путем стекания (дистилляцией). Получилась дистиллированная вода. Но она не является абсолютно чистой, потому что к ней примешиваются частицы атмосферного воздуха. Почти аналогичный состав наблюдается у очищенной снеговой или дождевой воды.

СОВМЕСТИТЕ ПОЛЕЗНОЕ С ПРИЯТНЫМ!

Откуда берётся вода?

Цель

Познакомить с процессом конденсации.

Материалы

  • ёмкость с горячей водой
  • зеркало.

Я подержала охлажденное зеркало над паром. Я рассмотрела капельки воды, которые появились на нём. Откуда взялась эта вода?

Это пар осел на зеркале и охладился, превратившись в воду. Тоже повторили, но с тёплым зеркалом - капель воды очень мало.

Почему?

Процесс превращения пара в воду происходит при охлаждении пара.

Куда исчезает вода?

Цель

Выявить процесс испарения воды, зависимость скорости испарения от условий (температура воздуха, наличие ветра).

Материалы

  • Три одинаковые ёмкости с одинаковым количеством воды.

Нужно налить одинаковое количество воды в ёмкости, сделать отметку уровня и поместить в разные условия: на батарею, около окна и в прохладное место (тумба).

Теперь наблюдаем за процессом испарения воды, фиксируют в дневнике наблюдений .

Почему?

Вода быстрее испаряется в тепле (у батареи), потом около окна (ветер - сквозняк), в последнюю очередь в тумбе (там прохладно, нет сквозняка).

Водяной пар, превращается в водяные капли?

Понадобится:

  • .Чайник
  • .Горелка
  • .Вода
  • .Металлическая кружка
  • Несколько куликов льда и ледяная вода

Технологический процесс:

  1. Наполните чайник водой.
  2. Дайте воде вскипеть.
  3. Положите несколько кубиков льда и ледяную воду в металлическую кружку.
  4. Когда чайник закипит, сделайте так, чтобы поток пара был направлен на металлическую кружку.

Каков результат?

Водяные капли появляются на внешней поверхности металлической кружки.

Почему?

Водяной пар превращается в капли воды при соприкосновении с холодной поверхностью. Этот процесс, во время которого вода меняет свое газообразное состояние на жидкое, называется "конденсацией". Из-за того что металлическая кружка намного холоднее, чем кипящая вода в чайнике, поток пара, выходящий из него, превращался в капли воды, как только касался поверхности кружки.

  • Водяной пар - газообразное агрегатное состояние воды. Не имеет цвета, вкуса и запаха. Водяной пар - в чистом виде или в составе влажного газа, - находящийся в термодинамическом равновесии с поверхностью влажного вещества, называют равновесным водяным паром.

    Содержится в тропосфере.

    Образуется молекулами воды при её испарении.

    При поступлении водяного пара в воздух он, как и все другие газы, создаёт определённое давление, называемое парциальным. Оно выражается в единицах давления - паскалях.

    Водяной пар может переходить непосредственно в твёрдую фазу (десублимация) - в кристаллы льда. Количество водяного пара в граммах, содержащегося в 1 кубическом метре, называют абсолютной влажностью воздуха.

Связанные понятия

Пло́тность во́здуха - масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Плотность воздуха является функцией от давления, температуры и влажности. Обычно, стандартной величиной плотности воздуха на уровне моря в соответствии с Международной стандартной атмосферой принимается значение 1,2250 кг/м³, которая соответствует плотности сухого воздуха при 15 °С и давлении 101330 Па.

Горе́ние - сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе экзотермических реакций, сопровождающийся интенсивным выделением тепла. Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде теплового излучения и света. Светящаяся зона называется фронтом пламени или просто пламенем.

Жи́дкий ге́лий - жидкое агрегатное состояние гелия. Представляет собой бесцветную прозрачную жидкость, кипящую при температуре 4,2 К (для изотопа 4He при нормальном атмосферном давлении). Плотность жидкого гелия при температуре 4,2 К составляет 0,13 г/см³. Обладает малым показателем преломления, из-за чего его трудно увидеть.

Газ , или газообразное состояние (от нидерл. gas, восходит к др.-греч. χάος (háos)) - одно из четырёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

Пар-жидкость-кристалл или ПЖК (в английской литературе - vapor-liquid-solid - VLS)) - механизм роста одномерных структур, таких как нановискеры в процессе химического осаждения из газовой фазы. Рост кристалла вследствие осаждения из газовой фазы обычно протекает очень медленно. Однако возможно введение на поверхность капель катализатора, способного адсорбировать вещество из газа до состояния пересыщенного расплава, из которого и будет происходить его кристаллизация на подложку. Таким образом, физические...

Кондициони́рование во́здуха - автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения воздуха) с целью обеспечения оптимальных климатических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности.

Пиролизный котёл - разновидность твердотопливного, как правило, водогрейного котла, в котором топливо (например, дрова) и выходящие из него летучие вещества сгорают раздельно. Обычно как синоним употребляется название газогенераторный котёл, изредка делают различие. Фактически, пиролиз (разложение и частичная газификация под действием нагревания) происходит при любом способе сжигания твёрдого органического топлива.

Пароочиститель (иногда парогенератор) - прибор, используемый для чистки и дезинфекции поверхностей и материалов, устойчивых к воздействию горячего пара.

Благоро́дные га́зы (также ине́ртные или ре́дкие га́зы) - группа химических элементов со схожими свойствами: при нормальных условиях они представляют собой одноатомные газы без цвета, запаха и вкуса с очень низкой химической реактивностью. К благородным газам относятся гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe) и радиоактивный радон (Rn). Формально к этой группе также причисляют недавно открытый оганесон (Og), однако его химические свойства почти не исследованы.

Абсо́рбция (лат. absorptio от absorbere - поглощать) - поглощение сорбата всем объёмом сорбента. Является частным случаем сорбции.

Холодильник (химия) - лабораторный прибор для конденсации паров жидкостей при перегонке или нагревании (кипячении). Используют для отгонки растворителей из реакционной среды, для разделения смесей жидкостей на компоненты (Фракционная перегонка) или для очистки жидкостей перегонкой.

Упоминания в литературе (продолжение)

Парообразная вода – это водяной пар порового пространства почвы. Относительная влажность почвенного воздуха почти всегда близка к насыщению ее парами воды, и уже при влажности почвы свыше ее максимальной гигроскопичности практически равна 100 %. Всякое понижение температуры приводит к конденсации парообразной воды и переводу ее в жидкое состояние, повышение температуры приводит к обратному процессу. Передвижение парообразной воды в поровом пространстве почвы обусловливается упругостью пара (от участков с высокой упругостью водяного пара к участкам с более низкой упругостью), а также вместе с током воздуха. Парообразная вода недоступна растениям, но ее наличие в почве важно в том плане, что она препятствует просушиванию корней растений.

Активация углей может осуществляться посредством обработки водяным паром или специальными химическими реагентами. Активация водяным паром проводится при температуре 800–1000 °C в строго контролируемых условиях. При этом на поверхности пор происходит химическая реакция между водяным паром и углем, в результате чего образуется развитая структура пор и увеличивается внутренняя поверхность угля. С помощью такого процесса можно получать угли, обладающие различными адсорбционными свойствами.

В итоге почти весь водяной пар из состава вулканических газов должен был конденсироваться, формируя гидросферу. В этот первичный океан переходили, растворяясь в воде, и другие компоненты вулканических газов – бо́льшая часть углекислого газа, «кислые дымы», окиси серы и часть аммиака. В результате первичная атмосфера (содержащая – в равновесии с океаном – водяные пары, CO2, CO, CH4, NH3, H2S, инертные газы и являющаяся восстановительной) оставалась тонкой и температура на поверхности планеты не отклонялась сколь-нибудь заметно от точки лучистого равновесия, оставаясь в пределах существования жидкой воды. Это и предопределило одно из главных отличий Земли от других планет Солнечной системы – постоянное наличие на ней гидросферы.

2) относительную влажность (процентное отношение фактического содержания водяного пара в 1 м3 воздуха к потенциальному при данной температуре). Когда водяные пары в атмосфере становятся очевидными, то их можно наблюдать в виде:

При диссоциации водяных паров (они проникают в зону дуги из воздуха, флюса и др.), которая развивается в зоне сварки под воздействием высокой температуры, образуется еще один газ – водород. Он может быть и молекулярным, и атомарным, причем последний хорошо растворяется в расплавленном металле, особенно при повышении температуры. Когда она поднимается до 2400 °C, количество водорода составляет 43 см3 на 100 г металла (это максимальное значение).

Влажность воздуха, различают абсолютную и относительную влажность воздуха. Для характеристики абсолютной влажности пользуются величиной парциального давления водяного пара в воздухе, называемой упругостью водяного пара. Предельное значение упругости соответствует максимально возможному насыщению воздуха водяным паром. Чем выше температура, тем больше будет значение предельной упругости.

Необходимо отметить, что в атмосферном воздухе, помимо газов, имеется определенное количество водяного пара . То количество воды, которое содержится 1 м3 воздуха, принято определять как абсолютную влажность. Единицей ее измерения является г/м3.

Возможно, первая атмосфера Земли содержала много водорода, метана и аммиака, напоминая состав атмосферы внешних планет Солнечной системы. Со временем к этим элементам добавились водяной пар и углекислый газ, выделяющиеся при дегазации вновь образовавшихся скальных пород. Вода вначале оставалась в виде пара, пока жар атмосферы не позволял ей конденсироваться. С другой стороны, столь же вероятно, что первичная атмосфера из водорода, метана и аммиака была по большей части «сдута» излучением Солнца вскоре после своего образования и первая стабильная земная атмосфера сформировалась преимущественно из углекислого газа и водяного пара, выделившихся из недр через фумаролы и вулканы. В любом случае вода, конденсировавшаяся и выпадавшая в виде дождя, когда Земля остыла, несомненно содержала молекулы аммиака, метана и водорода, растворенные в ней. Когда этот раствор подвергался высокоэнергетическому воздействию вроде ударов молний или ультрафиолетового излучения Солнца, могли происходить химические реакции, способствовавшие синтезу сложных органических соединений, таких как аминокислоты, – материала, из которого состоят живые существа.

Ученые-биохимики решили проверить эту гипотезу и в середине прошлого века впервые попытались поставить ряд экспериментов по самозарождению жизни. Они построили лабораторную установку из двух сообщающихся сосудов, в одном из которых была вода, а в другом – модель атмосферы первобытной Земли из смеси газов: водорода, метана, аммиака и водяных паров . Когда ученые создали в такой атмосфере миниатюрную грозу, пропустив серию электрических разрядов, вода в сосуде побурела, а ее химический анализ показал, что там образовалось множество «кирпичиков» живой материи – аминокислот и других органических молекул. При продолжительной циркуляции и непрерывном воздействии электрических разрядов смесь порозовела, а еще через некоторое время потемнела и поменяла цвет на грязновато-красный. Детальные анализы показали, что в ней появились аминокислоты, представляющие собой элементы белковых молекул.

Объем водяных паров в продуктах сгорания складывается из нескольких составляющих: водяного пара, образовавшегося при сгорании водорода топлива, испарившейся влаги топлива и, наконец, влаги, внесенной в топку вместе с теоретически необходимым количеством воздуха:

Вода, как все мы прекрасно знаем, может иметь газообразное состояние, и такая летучая вода называется паром. В воздухе всегда находится определенное количество водяных паров . Взяли мы, к примеру, один кубический метр воздуха, исследовали и выяснили, что в этом кубическом метре присутствует 10 г воды. Вот это количество воды и называется абсолютной влажностью воздуха. Т. е. абсолютная влажность исследуемого воздуха равна 10 г/м3. А может быть 20 г/м3? Теоретически может, но ответить на этот вопрос однозначно нельзя.

Если теплый воздух насыщен водяными парами , то самое незначительное понижение температуры сейчас же вызывает осаждение этих паров в виде росы. «Точка росы» – температура, при которой водяные пары превращаются в капли – тем ближе подходит к температуре самого воздуха, чем больше его влажность.

Еще одним минусом при таком развитии событий является нарушение естественной диффузии водяных паров , что в холодное время вызовет конденсацию пара на внутренней поверхности капитальной стены. Так как влаге уходить будет некуда, то это приведет к тому, что конструкция начнет отсыревать, на ее поверхности и в толще станут развиваться микроорганизмы. В результате санитарно-гигиенические показатели конструкции резко ухудшатся.

Чем выше температура воздуха, тем большее количество паров требуется для его полного насыщения. В гигиеническом отношении наиболее важное значение имеет относительная влажность. Она дает представление о степени насыщения воздуха водяными парами и свидетельствует о возможности отдачи тепла путем испарения. В условиях дефицита влажности воздуха более интенсивно будет протекать отдача тепла при потоотделении.

Впрочем, как я уже говорил вам, у меня есть некоторое количество балласта, который в случае экстренной надобности может дать возможность подняться еще скорее. Клапан, находящийся на верхнем полюсе шара, является только предохраийтельным клапаном. Воздушный шар неизменно содержит одно и то же количество водорода. Подъем и снижение, повторяю, происходит только благодаря изменению его температуры. А теперь, господа, я хочу сообщить вам еще одну подробность: при сгорании водорода и кислорода на конце горелки получаются водяные пары ; поэтому я снабдил нижнюю часть цилиндрического ящика трубкой с клапаном, действующим при давлении в две атмосферы; следовательно, когда пар достигает такого давления, он сам автоматически выходит наружу.

Водород в зоне сварки образуется во время диссоциации водяных паров при высоких температурах дуги. Пары воды попадают в зону дуги из влаги электродного покрытия или флюса, ржавчины и окружающего воздуха. Молекулярный водород распадается на атомарный, который хорошо растворяется в расплавленном металле. Растворимость водорода в железе в значительной степени зависит от температуры металла. При температуре 2400 °С насыщение достигает максимального значения (43 см3 водорода на 100 г металла). При высоких скоростях охлаждения металла водород переходит из атомарного состояния в молекулярное, но полностью выделиться из металла не успевает. Это вызывает пористость и мелкие трещины. Снижение влияния водорода на качество сварного шва достигается сушкой и прокалкой материалов сварки, очисткой от ржавчины и защитой зоны дуги.

Процентное соотношение в воздухе кислорода, углекислого газа, азота, водяных паров , его температура, влажность, а также атмосферное давление, наличие ветра, осадков, пыли оказывают немалое влияние на организм собаки.

Атмосфера состоит на 78% из азота и на 21% из кислорода, оставшийся 1% приходится на все остальные вещества: инертные и другие газы (в том числе углекислый газ СО2 – 0,03%), водяной пар и прочие аэрозоли (так называемые пылевые и жидкие частицы, находящиеся во взвешенном состоянии). Этот состав практически не изменяется до высоты в несколько десятков километров. Современная атмосфера является в значительной степени продуктом живого вещества биосферы (слоя живого вещества, по В.И. Вернадскому – «пленка жизни»). Полное обновление кислорода планеты живым веществом происходит за 5200–5800 лет. Вся масса кислорода усваивается живыми организмами приблизительно за 2 тыс. лет, а вся углекислота – за 300–395 лет.

Наиболее вероятными претендентами на роль древних парниковых газов являются углекислый (СО2), метан (СН4), аммиак (NН3), закись азота (N2О), карбонилсульфид (OСS), а также, косвенно, азот (N2). (Высокое парциальное давление азота расширяет адсорбционные зоны молекул СО2, СН4 и водяного пара .) NН3, которому отводили роль парникового газа Саган и Мьюллен, а также N2О и OСS из перечня можно сразу вычеркивать: эти газы легко разрушаются ультрафиолетовым излучением и накопиться в атмосфере в достаточно больших количествах не могут. А вот N2, СО2 и СН4 не только устойчивы, но и выделяются в значительных объемах при дегазации мантии (подводные и наземные вулканы, метаморфизм) и в процессе жизнедеятельности различных микробов и, следовательно, могли насытить архейскую атмосферу. Чтобы создать ощутимый парниковый эффект в архейском эоне, правда, понадобилось бы не менее 3 % двуокиси углерода (почти в 100 раз больше, чем ныне). Однако при таких концентрациях этот газ сконденсировался бы в облака, отражающие солнечные лучи, и по мере остывания планеты оседал бы снежными шапками на полюсах, как на Марсе. Кроме того, при высоких концентрациях углекислого газа (?1 %) ультрафиолетовые лучи частично поглощались бы его молекулами, а частично рассеивались, и независимое от массы фракционирование стабильных изотопов серы не происходило бы. Да и сидерита в архейских палеопочвах почти нет, а этот карбонат железа просто-таки обязан был накапливаться при высоком парциальном давлении СО2.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров , ухудшая при сварке качество шва. Кроме того, при выходе из баллона, от резкого расширения происходит снижение температуры углекислоты и влага, отлагаясь в редукторе, забивает каналы и даже полностью закрывает выход газа. Для предупреждения замерзания влаги между баллоном и редуктором устанавливают электрический подогреватель.

Не менее повезло людям и с поведением воды при испарении. Вода при испарении (пар) превращается практически в простой газ, плотность которого меньше плотности воздуха, и поэтому вода способна насыщать своими молекулами земную атмосферу, создавая комфортные для человека погодные условия. Если бы водяной пар был заметно тяжелее воздуха, то поверхность всей Земли покрывал бы вечный слой тумана. Жизнь на такой планете трудно себе представить.

Классическим примером такого обмена служит круговорот воды в природе. Благодаря способности к фазовым переходам, вода присутствует в климатической системе в разных ипостасях. Водяной пар и мельчайшие облачные частицы являются «полномочными представителями» воды в атмосфере, снег и лед выполняют ту же роль в криосфере, гидросфера по самой своей сути – царство воды, даже тела многих живых организмов в значительной степени (человека – на 70–80 %) состоят из воды. Каждый фазовый переход сопровождается потреблением или выделением тепла (энергии); при этом общая масса воды во всей системе сохраняется, но происходит перераспределение масс в ее составляющих (рис. 5 и рис. 1 цветной вклейки).

Для сушки жидких продуктов на горячей поверхности в тонком слое применяется кондуктивный способ. В данном случае горячей поверхностью являются полые вальцы, внутри которых циркулирует водяной пар . Сушка на вальцах может осуществляться при атмосферном давлении или в вакууме.

Стационарный психрометр Августа (рисунок 1.3) состоит из двух одинаковых спиртовых термометров. Резервуар одного из них (влажного) обернут гигроскопичной тканью, конец которой опущен в наполняемый дистиллированной водой стаканчик. По ткани к резервуару этого термометра поступает влага взамен испаряющейся. Другой термометр (сухой) показывает температуру воздуха. Показания влажного термометра зависят от содержания водяных паров в воздухе, так как при снижении их массы в единице объема возрастает испарение воды с увлажненной ткани, вследствие чего резервуар охлаждается в большей мере. Определив показания термометров и разность температур, по психрометрической таблице, нанесенной на корпус психрометра, находят относительную влажность воздуха. Вода, испаряясь с поверхности батиста, поглощает тепло, вследствие чего показания влажного термометра меньше, чем сухого.

Первая причина в том, что животное питается растениями, а растения как раз содержат эти вещества. Почему же растения составлены из этих веществ? Растения окружены атмосферой, водой и водяными парами ; они опускают свои корни в почву. Поэтому они и должны содержать эти вещества. Именно: вода дает растению водород и кислород. Почва, растворясь в воде, больше всего несет растениям кальций, фосфор, хлор, серу, натрий, калий, фтор, магний, железо, кремний, марганец, алюминий и т. д. Атмосфера дает кислород, углерод и азот. В ничтожных количествах почва и ее вода содержат и другие элементы, но их количество мало, потому что это редкие вещества или тяжелые и скрытые в недрах земли и потому мало доступные растениям. Если бы на поверхности Земли и в атмосфере преобладали иные элементы, то и состав животных и растений был бы другой.

Парафин – смесь твердых углеводородов – выделяется путем их кристаллизации из так называемой парафиновой массы – смеси твердых и жидких углеводородов, которые получаются при перегонке с водяным паром мазута из некоторых видов нефти, богатых соответствующими твердыми углеводородами. Парафин находит в настоящее время широкое применение не только в промышленности, но и в медицине (парафинотерапия). Остаток после отгона из мазута упомянутых фракций, называемый гудроном или нефтяным пеком, после некоторой обработки находит широкое применение в дорожном строительстве (нефтяной или искусственный асфальт).

Кроме того, в атмосферном воздухе содержатся аргон, гелий, неон, криптон, водород, ксенон и другие газы. В небольшом количестве в атмосферном воздухе присутствуют озон, оксид азота, йод, метан, водяные пары .

К производственным вредностям относятся также неблагоприятные параметры микроклимата производственной среды, водяные пары , образующиеся в процессе варки пищи и мытья посуды, мучная пыль, продукты термического разложения жира, возникающие при жаренье и выпечке кондитерских изделий.

Евролан ДС1 – готовая к применению жидкая суспензия на синтетической основе, образующая эластичную изолирующую пленку. Материал обеспечивает требуемую защиту от водяного пара на разных основаниях. Он обладает диффузионной стойкостью, высокой адгезией, прочностью на растяжение до 450 %, долговечностью под воздействием влаги. Нанесение материла Евролан ДС1 выполняется в 2–3 слоя методом напыления на высохший слой Суперфлекс 1.

Хорошо растворяется в воде, негорючий, однако при нагревании емкости может взрываться. Отравление происходит туманом соляной кислоты, образующейся при взаимодействии газа с водяными парами воздуха. Пары действуют на организм как через органы дыхания, так и через кожу, оказывая сильное раздражающее действие на органы дыхания. В организме человека вызывает поражение и некроз клеток. Острое отравление сопровождается охриплостью голоса, удушьем, насморком, кашлем. При высоких концентрациях – раздражение слизистых, конъюктивит, помутнение роговицы, чувство удушья, хрипы, рвота, потеря сознания. Сильное раздражающее действие на кожу, при ожоге обычно возникает серьезное воспаление с пузырями. Длительное воздействие малых концентраций вызывает катары верхних дыхательных путей, быстрое разрушение эмали зубов, изъязвление слизистой оболочки носа. Предельно допустимая концентрация в рабочих помещениях – 0,005 г/м3, при 0,015 мг/м3 происходит раздражение слизистых оболочек верхних дыхательных путей, концентрации 0,05- 0,07 мг/м3 переносятся с трудом.

Гигрофиты – растения, живущие в местах, где воздух насыщен водяными парами , а почва содержит много капельножидкой влаги – на заливных лугах, болотах, в сырых тенистых местах в лесах, на берегах рек и озер. Гигрофиты испаряют очень много влаги за счет устьиц, которые нередко располагаются на обеих сторонах листа. Корни мало-разветвленные, листья большие.

error: