Исследование воды: виды и методы анализа качества и безопасности. Оценка качества родниковой воды Химический анализ воды в школьной лаборатории

МКОУ «Перегребинская СОШ №1»

«Исследование химического состава

водопроводной воды с. Перегребное

в условиях школьной лаборатории»

Учебно-исследовательская работа

Выполнила: Чернова Анна,

учащаяся 10 класса

Руководитель: Ластаева А.А. , учитель химии

с. Перегребное, 2017

Исследование химического состава водопроводной воды в условиях школьной лаборатории

Чернова Анна

с. Перегребное, МКОУ «Перегребинская СОШ №1», 10 класс

Аннотация

Вода – основное химическое вещество организма. От качества питьевой воды зависит здоровье человека. В своей работе автор в условиях школьной лаборатории анализирует химический состав водопроводной воды, включающий в себя дробный метод, который разработал Николай Александрович Тананаев, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению.

Цель работы : Определение химического состава водопроводной воды с. Перегребное в условиях школьной лаборатории.

Задачи:

    Изучить литературу по теме исследования

    Найти методы определения качества водопроводной воды.

    Определить факторы, влияющие на качество водопроводной воды

    Выяснить качественный состав водопроводной воды.

    Сопоставить качество водопроводной воды взятой из разных зданий с. Перегребное.

Предмет исследования : качество водопроводной воды

Объект исследования

Методы исследования:

1) эмпирические (наблюдение, эксперимент, беседа)

2) теоретические ( анализ , обобщение)

Автор приходит к выводам, что качество водопроводной воды ухудшается вследствие перемещения по водопроводным трубам, о чем свидетельствуют различие в результатах анализа воды в разных зданиях села.

Данная работа может быть использована на уроках химии при изучении тем «Теория электролитической диссоциации», «Соли».

ПЛАН ИССЛЕДОВАНИЯ

Всем с детства известна истина, что вода – источник жизни . Однако, далеко не все осознают и принимают тот факт, что вода является залогом здоровья и хорошего самочувствия. Все знают о важности воды в нашем организме. Вода - источник жизни , это - не просто слова. Присутствуя во всех клетках и тканях, играя главную роль во всех биологических процессах. Взрослые теряют каждый день 3,5 литра воды. Поэтому, наше тело постоянно нуждается в пополнении запаса чистой водой.

В настоящее время большую озабоченность вызывают проблемы различных этапов питьевого водоснабжения, в том числе негативные изменения качества питьевой воды в водоразводящих системах при централизованном водоснабжении. Потребление недоброкачественной питьевой воды приводит к росту заболеваний. Большинство из нас, несмотря на все угрозы и предостережения врачей, предпочитают водопроводную - собранную в водохранилищах из рек и озер, прошедшую несколько уровней очистки и поступившую по трубам в кран. Некоторые очищают ее дополнительно в домашних условиях при помощи фильтра, другие покупают чистую питьевую воду в бутылках. Но давайте разберемся, насколько мы можем быть уверены в том, что пьем? Соответствует ли качество водопроводной воды в различных районах с. Перегребное требованиям ГОСТ? Можно ли в домашних условиях или в условиях школьной лаборатории определить качество воды?

Гипотеза: 1) Качество водопроводной воды можно определить в условиях школьной лаборатории.

2) Качество употребляемой нами воды соответствует ГОСТ

Цель: Определение химического состава водопроводной воды с. Перегребное при централизованном водоснабжении в условиях школьной лаборатории.

Задачи:

1.Изучить литературу по теме исследования

2.Найти методы определения качества водопроводной воды.

3.Определить факторы, влияющие на качество водопроводной воды

4.Выяснить качественный состав водопроводной воды.

5.Сопоставить качество водопроводной воды взятой из разных зданий с. Перегребное.

Предмет исследования : качество водопроводной воды

Объект исследования : химический состав водопроводной воды

Методы исследования:

1. Методы эмпирического исследования : наблюдение, эксперимент, беседа

2. Методы теоретического исследования: анализ

Исследовательский инструмент: качественный анализ, включающий в себя дробный метод, который разработал Н.А Танаев. Он открыл ряд новых, оригинальных реакций, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению.

Теоретический обзор информации по теме исследования

Нормы качества питьевой воды

Министерство экологии РФ по соответствию химического состава питьевой воды норме и ещё ряду экологических показаний, составляет ежегодный рейтинг лучших городов России. Например, 2015-году в число лидеров вошли Кызыл, Нижневартовск, Глазов, Петрозаводск, Ханты-Мансийск (Приложение 1) . Однако на международном уровне при оценке самого чистого и качественного водоресурса Россия не попала в Топ-10, уступив место Швейцарии, Швеции, Норвегии. В этом соревновании оценивались органолептические, химические, микробиологические свойства воды, которые учитываются при установлении нормативных параметров.

Российские нормативные документы тоже включают требования к качеству по органолептическим свойствам (с оценкой запаха, мутности, вкуса и др.), химическому составу (жёсткости, окисляемости, щелочности и др.), вирусо-бактериологическим и радиологическим признакам. Нормы качества питьевой воды по СанПиНу и ГОСТу, установленные для пользования, подробно расписывают параметры содержания химических веществ (Приложение 2).

В процессе эксплуатации систем водоснабжения ответственность за качество возлагается на юридическое лицо или индивидуального предпринимателя, которые осуществляют контроль как в местах водозабора и в точках водоразбора, так и на промежуточном этапе поступления ресурса в распределительную сеть. В зависимости от места, правила регламентируют периодичность и количество проверок.

В местах водозабора микробиологические и органолептические пробы из подземных источников берутся не реже 4 раз в год (по сезонам); из поверхностных источников – не реже 12 раз. Неорганические/органические пробы из подземных источников – раз в году и из поверхностных – ежесезонно. Радиологические – независимо от источника – раз в год.

Соответствие нормам качества питьевой воды с высокой степенью достоверности определяется даже в домашних условиях. Для этого применяют переносные анализаторы, подающиеся уже с готовым к использованию набором реактивов.

Факторы, влияющие на качество водопроводной воды

Исследования проб перед поступлением в водораспределительную сеть проводятся чаще и зависят от большего количества факторов

Работа насосно-фильтровальных станций

Предназначение насосно-фильтровальных станций - очищение (осветление) и обеззараживание воды.

Насосно-фильтровальные станции (НФС) или станции очистки сточных вод представляют собой комплексы очистных сооружений, состав которых определяется качеством исходной воды, требованиями к водоподготовке и рядом других условий (производительностью станции, особенностями ландшафта и пр.).

Обычно в состав НФС входит: насосные станции первого и второго подъема, система обеззараживания, секции очистных сооружений (смесители, камеры хлопьеобразования, горизонтальные отстойники, блоки скорых фильтров), резервуары чистой воды и блок вспомогательных сооружений (реагентное хозяйство). Современные НФС снабжаются системами автоматизированного управления технологическим процессом, значительно повышающими эффективность их работы.

В селе Перегребное действует две НФС. Водоочистительная станция очищает воду перед поступлением ее в водопроводную сеть села. Обеззараживание воды происходит ультрафиолетом, что способствует росту экологической безопасности процесса водоподготовки.

Канализационная очистительная станция служит для очистки воды, поступающую из канализационной сети села. Она построена в 2014 году. Производительность каждой 1 000 м.куб/сут. Диапазон производительности 800 – 1200 м 3 /сут (Приложение 3)

Состояние водопроводных труб

Образующиеся на внутренней поверхности трубопроводов отложения являются продуктами сложных физико-химических процессов, происходящих на ней самой или на нанесённом защитном покрытии, а также в транспортируемой по трубопроводу воде. Кроме того, отложения в трубопроводах в ряде случаев являются продуктами жизнедеятельности микроорганизмов, поселившихся и присутствующих в водопроводных трубах благодаря сложившимся условиям.

Характер отложений в трубопроводах, как правило, определяется:
- физико-химическими свойствами транспортируемых вод,

Условиями эксплуатации сети,

- продолжительностью службы трубопроводов

Запах воды из крана может меняться в худшую сторону по ряду причин. Чаще всего вода начинает неприятно пахнуть из-за металла водопроводных труб, чрезмерного размножения микроорганизмов, химических веществ, использующихся для борьбы с вредоносными бактериями.

К появлению неприятного запаха приводит множество причин. Чаще всего вода изменяет свой запах под воздействием очищающих химических веществ. Не менее распространенной причиной появления рассматриваемой проблемы является плохое качество водопроводных труб.

Химический состав водопроводной воды и его влияние на организм человека

Половина населения России получает воду, опасную для здоровья. Загрязненная вода вызывает до 80 % всех известных болезней и на 30 % ускоряет процесс старения. Химические вещества поступают в организм человека не только при прямом потреблении воды в питьевых целях и при приготовлении пищи, а также и косвенно. Например, при вдыхании летучих веществ и кожном контакте во время принятия водных процедур. Вода, текущая из наших кранов, имеет определенный химический состав. Химические вещества, содержащиеся в воде, можно разделить на несколько групп:1) вещества, которые наиболее часто встречаются в водопроводной воде (фтор, железо, медь, марганец, цинк, ртуть, селен, свинец, молибден,нитраты,сероводород);
2) вещества, остающиеся в воде после реагентной обработки: коагулянты (сульфат алюминия), флоккулянты (полиакриламид), реагенты, предохраняющие водопроводные трубы от коррозии (остаточные триполифосфаты), хлор; 3)вещества, которые попадают в водоемы со сточными водами (бытовые, промышленные отходы, поверхностные стоки сельскохозяйственных угодий, которые были обработаны химическими средствами защиты растений: гербицидами и минеральными удобрениями); 4) компоненты, которые могут попадать в воду из водопроводных труб, переходников, соединений, сварочных швов и др. (медь, железо,свинец). Все эти вещества могут быть как полезными, так и опасными для здоровья человека (
Приложение 4 )

ОПИСАНИЕ РАБОТЫ

Лабораторное исследование химического состава водопроводной воды

Для исследования были взяты 3 пробы воды из разных зданий села Перегребное.

Образцы воды :1- эталонная проба воды: негазированная вода Bon Aqua , разливается в г. Самара, производитель фирма « Кока Кола»

2- водопроводная вода ул. Спасенникова 14 a кв.6

3- водопроводная вода ул. Лесная 1б кВ 11 (проба взята 14 февраля после отключения на 2 часа подачи воды).

4- водопроводная вода пер. Школьный, д 1 (химический кабинет).

В школьной лаборатории были проведены следующие исследования:

в пределах 6-9

Общая минерализация (сухой остаток)

мг/л

1000 (1500)

1000

Жесткость общая

мг-экв/л

7,0 (10)

Окисляемость перманганатная

мг О2/л

5,0

Нефтепродукты, суммарно

мг/л

0,1

Поверхностно-активные вещества (ПАВ), анионоактивные

мг/л

0,5

Фенольный индекс

мг/л

0,25

Щелочность

мг НСО3 -

Алюминий (Al 3+ )

мг/л

0,5

с.-т.

0,2

Азот аммонийный

мг/л

2,0

с.-т.

1,5

Асбест

милл.во-локон/л

Барий (Ва 2+ )

мг/л

0,1

с.-т.

0,7

Берилий(Ве 2+ )

мг/л

0,0002

с.-т.

Бор (В, суммарно)

мг/л

0,5

с.-т.

0,3

Ванадий (V)

мг/л

0,1

с.-т.

0,1

Висмут (Bi)

мг/л

0,1

с.-т.

0,1

Железо (Fe,суммарно)

мг/л

0,3 (1,0)

орг.

0,3

Кадмий (Cd,суммарно)

мг/л

0,001

с.-т.

0,003

Калий (К + )

мг/л

Кальций (Са 2+ )

мг/л

Кобальт (Со)

мг/л

0,1

с.-т.

Кремний (Si)

мг/л

10,0

с.-т.

Магний (Mg 2+ )

мг/л

с.-т.

Марганец (Mn, суммарно)

мг/л

0,1 (0,5)

орг.

0,5 (0,1)

Медь (Сu, суммарно)

мг/л

1,0

орг.

2,0 (1,0)

Молибден (Мо,суммарно)

мг/л

0,25

с.-т.

0,07

Мышьяк (As,суммарно)

мг/л

0,05

с.-т.

0,01

Никель (Ni,суммарно)

мг/л

0,1

с.-т.

Нитраты (поNO 3 - )

мг/л

с.-т.

50,0

Нитриты (поNO 2 - )

мг/л

3,0

3,0

Ртуть (Hg, суммарно)

мг/л

0,0005

с.-т.

0,001

Свинец (Pb,суммарно)

мг/л

0,03

с.-т.

0,01

Селен (Se, суммарно)

мг/л

0,01

с.-т.

0,01

Серебро (Ag + )

мг/л

0,05

Сероводород (H 2 S)

мг/л

0,03

орг.

0,05

Стронций (Sr 2+ )

мг/л

7,0

орг.

Сульфаты (SO 4 2- )

мг/л

500

орг.

250,0

Фториды (F) для климатических районов I и II

мг/л

1,5 / 1,2

с.-т.с.-т.

1,5

Хлориды (Cl - )

мг/л

350

орг.

250,0

Хром (Cr 3+ )

мг/л

0,5

с.-т.

Хром (Cr 6+ )

мг/л

0,05

с.-т.

0,05

Цианиды (CN - )

мг/л

0,035

с.-т.

0,07

Цинк (Zn 2+ )

мг/л

5,0

орг.

3,0

Колифаги

Число бляшкообразующих единиц (БОЕ) в 100 мл

Отсутствие

Споры сульфоредуцирующих клостридий

Число спор в 20 мл

Отсутствие

Цисты лямблий

Число цист в 50 мл

Отсутствие

Требования к органолептическим свойствам воды

Приложение 2


Рис. 1 Канализационно-очистная станция Рис.2 Фильтрующее устройство

Приложение 3

Влияние некоторых химических загрязнителей воды на организм человека .

Хлор в водопроводной воде

Хлор (Cl) , а точнее хлорсодержащие соединения, один из основных реагентов, используемых на водоочистных станциях для обеззараживания и осветления воды, поступающей в дома россиян. В воде хлор образует гипохлорную кислоту и гипохлорид натрия . Эти химические соединения, производные хлора, могут быть опасны для здоровья при их высоких концентрациях в воде. Особенно чувствительны к действию хлора дети.
Небольшие дозы хлора могут способствовать развитию воспаления слизистой оболочки полости рта, глотки, пищевода, вызывать спонтанную рвоту. Вода, содержащая большое количество хлора, оказывает токсическое действие на организм человека.

Алюминий в водопроводной воде

Алюминий (Al) присутствует в природной воде. Сульфат алюминия широко используется в процессах водоподготовки в качестве коагулянта, и присутствие его в питьевой воде является результатом недостаточного контроля при выполнении этих процессов. При изучении влияния на организм человека соединений алюминия было установлено, что алюминий в больших количествах может вызывать повреждение нервной системы .
Магний в водопроводной воде

Магний (Mg ) также необходим человеческому организму, он содержится в каждой клетке тела человека и постоянно вводится в организм с пищей и водой. Выявлено также и негативное влияние повышенного содержания магния на нервную систему человека, ионы магния обратимое угнетение центральной нервной системы, так называемый магниевый наркоз.

Железо в водопроводной воде

Железо (Fe) - это один из основных элементов природной воды. Иными источниками железа в водопроводной питьевой воде являются железосодержащие коагулянты, которые используются в процессах водоподготовки. Это может быть железо, проникающее в водопроводную воду из участков стальных и чугунных водопроводных труб, подвергшихся коррозии. При повышенном содержании железа в питьевой воде она приобретает ржавый цвет и металлический привкус. Такая вода непригодна к употреблению. Регулярное употребление питьевой воды повышенным содержанием железа может привести к развитию заболевания, которое носит название гемохроматоза (отложение соединений железа в органах и тканях человека).

Кальций в водопроводной воде

Кальций (Са) , поступающий в организм, обладает благоприятной для человека способностью уплотнять клеточные и межклеточные коллоиды, а также влиять на процессы образования клеточной оболочки. Выявлена способность ионов кальция уплотнять клеточную оболочку и снижать клеточную проницаемость, что приводит к снижению кровяного давления, а при недостаточной концентрации ионов кальция происходит растворение межклеточных спаек, разрыхление стенок кровеносных капилляров и увеличение клеточной проницаемости, что приводит к повышению кровяного давления. Известна положительная роль кальция в процессе свертывания крови .

Медь в водопроводной воде

Уровень меди (Cu) в подземных водах довольно низок, но использование меди в составляющих водопровода может способствовать значительному повышению ее концентрации в водопроводной воде. Концентрация меди более 3 мг/л может вызвать острое нарушение функции желудочно-кишечного тракта. У людей, страдающих либо перенесших заболевания печени (например, вирусный гепатит), собственный обмен меди в организме нарушен.
Наиболее чувствительны к повышенной концентрации меди в воде грудные дети , находящиеся на искусственном вскармливании. У них еще в младенческом возрасте при употреблении такой воды существует реальная, угроза развития цирроза печени.

Свинец в водопроводной воде.

Источниками свинца (Рb) в питьевой водопроводной воде могут быть: свинец, растворенный в природной воде; свинец загрязнителей, попадающих в природную воду различными путями (например, бензин); свинец, содержащийся в водопроводных трубах, переходниках, сварочных швах и др. При употреблении воды с повышенным содержанием свинца могут развиваться острые или хронические отравления организма человека. Острое отравление свинцом опасно тем, что может привести к смертельному исходу. Хроническое отравление свинцом развивается при постоянном употреблении малых концентрации свинца. Свинец откладывается практически во всех органах и тканях человеческого организма.

Цинк в водопроводной воде

Цинк (Zn) содержится практически во всех продуктах, в воде в том числе. В ней он присутствует в виде солей и органических соединений. Его содержание в природной воде нe превышает 0,05 мг/л , но в водопроводной питьевой воде его концентрация может быть выше за счет дополнительного поступления из водопроводных труб.
Высокое содержание солей цинка в питьевой воде может вызвать серьезное отравление организма человека. Установлено, что уровень солей цинка в водопроводной питьевой воде более 3 мг/ л делает ее непригодной к употреблению

Потребление недоброкачественной питьевой воды приводит к росту заболеваний как инфекционной, так и неинфекционной природы, связанной с химическим составом воды. Нарушение приведенных качеств питьевой воды наблюдается при неблагополучном состоянии поверхностных водоисточников, низкой эффективности водоподготовки, а также неудовлетворительном состоянии внутренней поверхности труб водоразводящих систем

Приложение 4

Таблица по определению характера запаха

Интенсивность

запаха

Характер проявления запаха

Оценка

интенсивности

запаха

Нет

Запах не ощущается

0

Очень слабая

Запах сразу не ощущается, но обнаруживается при тщательном исследовании (при нагревании воды).

1

Слабая

Запах замечается, если обратить на это внимание.

2

Заметная

Запах легко замечается и вызывает неодобрительный отзыв о воде.

3

Отчетливая

Запах обращает на себя внимание и заставляет воздержаться от питья.

4

Очень сильная

Запах настолько сильный, что делает воду непригодной к употреблению.

5

Приложение 5

Таблица по определению цветности воды

Цветность воды

Мутность воды

Слабо-желтоватая

Слабо опалесцирующая

Светло-желтоватая

Опалесцирующая

Желтая

Слабо мутная

Интенсивно-желтая

Мутная

Коричневая

Очень мутная

Красно-коричневая

Чрезвычайно мутная

Другая (укажите какая)

Приложение 6

Таблица определения мутности воды

Исследовательская работа «Сравнительный химический анализ воды с.Тукаево и г.Тарко-Сале»

Руководитель: Насырова Альбина Галиулловна
Работу выполняла ученица 10 класса Адельметова Эльза
Описание: Данная работа была представлена на республиканской научно-практической конференции "Чистая наука"

Причиной написания данной работы стала поездка в г.Тарко-Сале. В ходе пребывания в этом городе меня удивил тот факт, что на стенках чайника у них не остается накипь. Из курса химии мне известно, что накипь, является последствием использования жесткой воды.
Вода прямым образом влияет на здоровье человека, и мы решили ответить на вопросы: что за вода течет из нашего крана? Какие вещества содержатся в ней? Чем отличается вода с.Тукаево от воды г.Тарко-Сале? С чем это может быть связано?
Исходя из вышесказанного была поставлена цель исследовательской работы: провести сравнительный химический анализ воды с.Тукаево и г.Тарко-Сале в условиях школьной лаборатории и сравнить результаты.
Объект исследования:
- вода с.Тукаево
- вода г.Тарко-Сале
Методы исследования:
- Обзор литературы
- Физический и химический анализ воды
- Сравнение
Практическая значимость данной работы заключается в создании презентации, выпуске брошюры, газеты просветительского содержания.

Химические компоненты воды
Химические компоненты природных вод условно делят на 5 групп: 1)Главные ионы; 2)растворённые газы; 3)биогенные вещества; 4)микроэлементы; 5) органические вещества
Сравнительный химический анализ воды с.Тукаево и г.Тарко-Сале
I Органолептические показатели воды
1. Цвет (окраска)
Диагностика цвета – один из показателей состояния воды.
Для определения цветности воды мы взяли стеклянный сосуд и лист белой бумаги. В сосуд набрали воду и на белом фоне бумаги определили цвет воды (бесцветный, зелёный, серый, жёлтый, коричневый) – показатель определённого вида загрязнения.
При анализе обоих проб вода была бесцветной, значит, вода пригодна к употреблению.
2.Прозрачность
Для определения прозрачности воды мы использовали прозрачный мерный цилиндр с плоским дном, в который налили воду, затем подкладывали под цилиндр на расстоянии 4 см от его дна шрифт, высота букв которого 2 мм, толщина линий букв – 0,5 мм, и сливали воду до тех пор, пока сверху через слой воды не стал виден этот шрифт. Измерили высоту столба оставшейся воды линейкой и выразили степень прозрачности в сантиметрах. При прозрачности воды менее 3 см водопотребление ограничивается.
В питьевой воде обоих проб прозрачность воды 10 см
3.Запах
Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают в неё естественным путём и со сточными водами. Запах воды не должен превышать 2 баллов. Интенсивность запаха определяли по таблице:
Балл Интенсивность запаха Качественная характеристика
0 - Отсутствие ощутимого запаха
1 Очень слабая Запах, не поддающийся обнаружению потребителем, но обнаруживаемый в лаборатории опытным исследованием
2 Слабая Запах, не привлекающий внимания потребителя, но обнаруживаемый, если на него обратить внимание
3 Заметная Запах, легко обнаруживаемый и дающий повод относиться к воде с неодобрением
4 Отчётливая Запах, обращающий на себя внимание и делающий воду непригодным для питья
5 Очень сильная Запах настолько сильный, что вода становится непригодной для питья

Запах воды определяли в помещении, в котором не было постороннего запаха. В питьевой воде обоих проб запах отсутствует, значит, она пригодна для питья.
II Химический анализ воды
1.Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7).
Значение рН определили следующим образом. В пробирку налили 5 мл исследуемой воды, 0,1 мл универсального индикатора, перемешали и по окраске раствора определили рН: раствор воды с.Тукаево окрасился в светло-желтый цвет – нейтральная среда, а вода г.Тарко-Сале в розово-оранжевый – щелочная среда.
Розово-оранжевая – рН около 6;
Светло-жёлтая – 7;
Зеленовато-голубая – 8.
2. Определение хлорид-ионов
Концентрация хлоридов допускается до 350 мг/л.
В пробирку налили 5 мл исследуемой воды с.Тукаево и г.Тарко-Сале и добавили 3 капли 10-% раствора нитрата серебра. Приблизительное содержание хлоридов определили по осадку или помутнению.
Определение содержания хлоридов
Осадок или помутнение Концентрация хлоридов, мг/л
Слабая муть 1-10
Сильная муть 10-50
Образуются хлопья, но осаждаются не сразу 50-100
Белый объёмистый осадок Более 100

В питьевой воде с.Тукаево выпадал белый объёмистый осадок (более 100 мг/л).
Во второй пробе питьевой воды с г.Тарко-Сале наблюдалась слабая муть (1-10 мг/л).
3.Определение сульфатов.
В пробирку внесли 10 мл исследуемых вод, 0,5 мл соляной кислоты (1:5) и 2 мл 5 %-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определили ориентировочное содержание сульфатов. При отсутствии мути концентрация сульфат-ионов менее 5 мг/л; при слабой мути, появляющейся не сразу, а через несколько минут, - 5-10мг/л; при слабой мути, появляющейся сразу после добавления хлорида бария, - 10-100 мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат-ионов (более 100 мг/л).
В первой пробе воды г.Тарко-Сале наблюдалась слабая муть, появляющаяся не сразу (5-10 мг/л).
Во второй пробе воды с.Тукаево - слабая муть, появляющаяся сразу (10-100 мг/л).
В обеих пробах воды допустимая норма сульфат-ионов.
5. Обнаружение железа
Предельно допустимая концентрация общего железа в воде составляет 0,3 мг/л.
В пробирку поместили 10 мл исследуемых проб воды г. Тарко-Сале и с.Тукаево, прибавили 1 каплю концентрированной азотной кислоты, несколько капель раствора пероксида водорода и примерно 0,5 мл раствора роданида калия. При содержании 0,1 мг/л появляется розовое окрашивание, а при более высоком – красное.
При анализе питьевой воды с.Тукаево не было розового окрашивания, значит концентрация менее 0,1 мг/л, что соответствует допустимой норме железа в воде, а вода из г.Тарко-Сале окрасилась в красный цвет, значит количество железа в воде выше чем ПДК.
6. Обнаружение ионов кальция
Для определения наличия ионов кальция в воде г.Тарко-Сале и с.Тукаево мы использовали углекислый газ, который пропустили через воду. В результате эксперимента вода г.Тарко-Сале не изменилась, а при пропускании через воду с.Тукаево образовался осадок карбоната кальция.
Вывод: По СанПиНу содержание кальция в питьевой воде не нормируется, но по его количеству мы судим о жесткости воды, значит в воде г.Тарко-Сале кальция содержится небольшое количество, а в воде с.Тукаево большое количество.
Выводы и прогнозы
При проведении органолептических исследований воды получили следующие показатели:
Вода

Цвет (окраска) бесцветный бесцветный
Прозрачность 10 см 10 см
Запах Отсутствует (0) Отсутствует (0)
Вывод: Питьевая вода с.Тукаево и г.Тарко-Сале из водопровода пригодна для питья

При проведении химического анализа воды получили следующие показатели:
Вода
Показатели Питьевая вода с.Тукаево Питьевая вода г.Тарко-Сале
Водородный показатель Нейтральная Щелочная
Хлориды
Белый объёмистый осадок (более 100 мг/л) Слабая муть (1-10мг/л)

Сульфаты
Слабая муть, появляющаяся сразу (10-100 мг/л) Слабая муть, появляющаяся не сразу (5-10 мг/л)
Катионы железа Нет розового окрашивания, значит концентрация менее 0,1 мг/л Красное окрашивание, значит концентрация больше 0,3 мг/л
Катионы кальция обнаружили Не обнаружили
По данным химического анализа водопроводная вода пригодна для питья



Литература
1. Научно-методический журнал «Химия в школе», №3 2004 г.
2. Габриелян О.С. «Химия 9 класс», Учебник для общеобразоват. учреждений. – 7 изд., Дрофа, 2003.
3. Васильева З.Г., Грановская А.А., Таперова А.А. «Лабораторные работы по общей и неорганической химии», Л.: Химия, 1986 г.
4. Вода питьевая. Государственные стандарты. Методы анализа. М: ИПК.
Издательство стандартов, 1996. - /// с.
5. Справочник по свойствам, методам анализа и очистки H2O – часть I. Под ред. А.Т.Пилипенко. Киев: Наукова Думка, 1980

Введение

Вода "из-под крана" используется нами повсеместно. По данным лаборатории питьевого водоснабжения НИИ экологии человека и окружающей среды РАМН, 90% водопроводных сетей подают в дома воду, не отвечающую санитарным нормам. Главная причина наличия в водопроводной воде вредных для здоровья нитратов, пестицидов, нефтепродуктов и солей тяжелых металлов - это катастрофическое состояние водопроводных и канализационных систем. Соединение канализационных вод с выбросами предприятий дает добавочный эффект: к перечисленным выше химическим составляющим питьевой воды добавляются и бактерии - кишечные палочки, патогенные микроорганизмы, холерный вибрион и т.д. Поэтому актуальность данной проблемы очень высока.

Объект исследования

Объектом исследования является обычная водопроводная вода, взятая из централизованного источника водоснабжения МОУ лицей №22, которая не подвергалась никакой предварительной обработке и фильтрации, чтобы была возможность составить объективную картину состояния воды, используемой в быту.

Гипотеза

Если вода почти прозрачна, не имеет достаточно выраженных вкуса и запаха, а также если содержание хлора, водородный показатель и жесткость воды удовлетворяют ПДК, то вода централизованного источника водоснабжения пригодна к применению.

Цель исследования

В соответствие с гипотезой, целью исследования является проверить, удовлетворяет ли водопроводная вода некоторым требованиям ГОСТа.

Обзор литературы

Был проведен обзор литературы по изучению влияния качества питьевой воды на здоровье, нормативов качества питьевой воды и образования мутагенов в результате хлорирования воды.

Методика "СОСТАВ И КАЧЕСТВО ВОДЫ"

Суточный обмен воды в организме человека составляет 2,5 л, поэтому от её качества сильно зависит состояние человека, его здоровье и работоспособность. Различные вещества, присутствующие в воде, придают ей запах, делают её то сладковатой, то солёной, а то и горькой. Существует 5-балльная шкала оценки интенсивности запаха и привкуса питьевой воды. При сомнении в качестве питьевой воды для очистки её от примесей следует использовать специальные фильтры.

Метод физического изучения воды включает:

  • Исследование прозрачности воды
  • Определение в воде взвешенных частиц
  • Запах
  • Вкус.

Данные показатели определяются по специальным методикам, описанным в различных источниках литературы (например, С.В.Дружинин "Исследование воды и водоемов в условиях школы", 2008).

Метод химического анализа включает определение:

  • Ионов в воде с помощью качественных реакций
  • рН, водородного показателя
  • Жесткости воды титриметрическим методом.

Определение ионов

Большинство известных элементов, входящих в состав вод в сравнительно больших количествах, существуют в виде ионов. Для доказательства наличия этих ионов в воде использовалась методика качественного химического полумикроанализа. Качественный анализ пробы воды проводился на наличие в воде: катионов магния, железа(II,III), кальция, свинца, меди; анионов брома, йода, хлора, сульфата.

Жесткость воды.

Жесткость воды обуславливается присутствием в ней солей кальция и магния. Это общая жесткость. Она складывается из карбонатной (временной, обусловленной присутствием гидрокарбонатов кальция и магния) и некарбонатной (постоянной, обусловленной присутствием хлоридов кальция, Mg 2+ и Fe 2+). Оставшиеся в растворе после кипячения соли обуславливают постоянную жесткость воды. Общая жесткость воды определяется следующим образом. В коническую колбу на 250 мл вносят 100 мл исследуемой воды, прибавляют 5 мл аммиачного буферного раствора(NH4OH+NH4Cl) для установления щелочной реакции, а затем 7-8 капель индикатора (эриохрома черного). Проба окрашивается в интенсивный вишнево-красный цвет. Раствор перемешивают и медленно титруют 0,05 нормальным раствором трилона "Б" до изменения окраски пробы от вишневой до синей. Это происходит из-за того, что трилон "Б" в щелочной среде взаимодействует с ионами кальция и магния, образуя комплексное неокрашенное соединение и вытесняя индикатор в свободном виде. Расчет общей жесткости производят по формуле:

где: V - объем раствора трилона "Б", израсходованного на титрование, мл.

N - нормальность раствора трилона "Б", мг экв/л (0.05)

V 1 - объем исследуемого раствора, взятого для титрования, мл.(100 мл)

Водородный показатель.

Вода тестируется различными индикаторами (лакмус, универсальная индикаторная бумага, метил оранжевый) и по изменению их окраски формулируются соответствующие выводы.

Результаты см. в таблице №1.

Сравнительный анализ данных, полученных в ходе исследования.

Он приведен в таблице "Соответствие физико-химических показателей пробы воды требованиям ГОСТ".

Параметр Единица измерения Полученное значение Предельно допустимая норма
по ГОСТу 2874-82
Прозрачность воды 5-балльная шкала 1 1.5
Присутствие взвешенных частиц 1 2
Вкус воды 1 2
Запах воды при t=20 o C
Запах воды при t=60 o C
1 2
Водородный показатель рН ~6.5 6.0 - 9.0
Жесткость моль/м 3 ~4.5 7.0

Выводы.

В ходе проведенного исследования было установлено:

  • Показатель мутности оптимален
  • Каких-либо взвешенных частиц в воде не обнаружено
  • Проба воды не обладала привкусом и запахом
  • Качественный анализ пробы воды дал отрицательный результат на наличие в воде: катионов магния, железа(II,III), свинца, меди; анионов, брома, йода; сульфатов
  • Были обнаружены катионы кальция (незначительное выпадение гипсового осадка) и анионы хлора (незначительное выпадение белого творожистого осадка хлорида серебра)
  • Причиной слабо кислой среды, вероятнее всего, является, установленное выше, наличие в воде ионов хлора
  • Жесткость воды была получена в пределах 4-4.5 ммоль/литр.

Таким образом, можно сделать вывод о том, что проба воды, взятая из централизованного источника водоснабжения МОУ лицей №22, соответствует требованиям ГОСТ согласно тем критериям, по которым проводилось исследование, а, значит, наша гипотеза подтвердилась.

  • продолжать мониторинговые исследования качества питьевой воды из разных источников;
  • провести сравнительный анализ полученных результатов;
  • исследовать пробы воды по методикам количественного анализа;
  • продолжать исследование в условиях лабораторий, обеспеченных соответствующим оборудованием и реактивами.

Список литературы.

  1. Боголюбов А.С. Экосистема. - М., 2001.
  2. Газета "Биология". Издательский дом "Первое сентября". №23, 2008
  3. Газета "Иваново-Пресс". №41 от 11.10.2007
  4. Попова Т.А. Экология в школе. - М., 2005. - 64 с.
  5. Сайт: www-chemistry.univer.kharkov.ua. Раздел: файлы, лекция 5 по экологии.
  6. Сайт: www.ijkh.ivanovo.ru . Раздел МУП "Водоканал".
  7. Сайт: www.prechist-ecologia.narod.ru . Раздел "Водная гладь".
  8. Федорос Е.И.Нечаева Г.А. Экология в экспериментах. -М, 2006. - 384 с.

В настоящее время учителю химии приходиться рассматривать самые различные экологические проблемы, одна из которых - проблема чистой воды. Оценивая воду на содержание минеральных солей, отдельно выделяют концентрацию в ней солей кальция и магния, говоря о степени жесткости воды.

Мыло в жесткой воде не мылится, овощи плохо развариваются, а при использовании такой воды в паровых котлах образуется накипь, которая снижает эффективность их работы и может привести к взрыву. Жесткую воду перед употреблением целесообразно умягчить, удалив катионы кальция и магния.

Однако для жизнедеятельности организма кальций и магний необходимы, так как играют важную роль в процессах формирования костей, свертываемости крови, сокращении сердечной мышцы, передачи нервных импульсов. Установлено, что в местностях с пониженным содержанием кальция в питьевой воде сердечные заболевания более распространенны. В тоже время, употребление жесткой воды увеличивает опасность заболевания мочекаменной болезнью, неблагоприятно влияет на формирование сосудов. Избыток ионов кальция в организме приводит к отложению солей в шейном, грудном, поясничном отделах позвоночника, суставах конечностей. Отсюда следует, что важно вести контроль за содержанием солей кальция и магния в питьевой воде. А познакомиться с некоторыми простыми методами определения жесткости воды учащиеся могут на уроках химии .

Определение общей жесткости воды в лабораторных условиях проводят методом комплексонометрического титрования с помощью кальциево-магниевых ионоселективных электродов. Но эти методы требуют дорогостоящих и практически недоступных для школы реактивов и приборов, поэтому предлагаем более приемлемый для школьной лаборатории способ с применением соляной кислоты и ортофосфата натрия.

Метод основан на осаждение ионов Са 2+ Mg 2+ избытком раствора ортофосфата натрия Na 3 PO 4 с последующим определением остатка осадителя:

3 MeCl 2 + 2 Na 3 PO 4 > Me 3 (PO 4) 2 v + 6NaCl

3 Me(HCO 3) 2 + 2 Na 3 PO 4 > Me 3 (PO 4) 2 v + 6 NaHCO 3 .

Как видно из приведенных выше уравнений, из Me(HCO 3) 2 образуется эквивалентное количество NaHCO 3 . При титровании остатка фосфата натрия соляной кислотой одновременно оттитровывается и гидрокарбонат натрия, на определение которого расходуется такое же количество соляной кислоты, как и на определение временной жесткости воды, что необходимо учитывать в расчетах.

Методика проведения анализа

В мерную колбу, вместимостью 250 мл переносят 100 мл анализируемой воды, добавляют точно измеренный объем (например, 25 мл) 0,2 н. раствора Na 3 PO 4 и отстаивают 30 минут. Затем доводят до метки дистиллированной водой, тщательно перемешивают и фильтруют через плотный бумажный фильтр в сухую емкость.

В коническую колбу объемом 250 мл отбирают 100 мл фильтрата и добавляют 2-3 капли индикатора метилоранжа, затем титруют соляной кислотой до появления бледно-розовой окраски раствора.

Параллельно определяют объем соляной кислоты, пошедшей на определение временной жесткости в идентичных условиях. Для этого берут мерную колбу вместимостью 250 мл, добавляют 100 мл анализируемой воды, доводят до метки дистиллированной водой и тщательно перемешивают. После этого в коническую колбу для титрования отбирают 100 мл раствора, добавляют 2-3 капли метилоранжа и титруют соляной кислотой до появления бледно-розового окрашивания.

1. Рассчитываем временную жесткость воды (моль/л) по формуле:

Ж в. = (С э (HCl) V (HCl) / V пр. ) (Vколбы / V (H 2 O) 1000 , где V (HCl) - объем соляной кислоты, пошедшей на титрование, л;

С э (HCl) - молярная концентрация эквивалента соляной кислоты, моль/л;

V (H 2 O) - объем анализируемой воды, л;

Vколбы - объем мерной колбы, л;

V пр. - объем воды, взятой для титрования, л.

Пример расчета представлен в Приложении 1. Сравнение полученных разными методами результатов показывает, что предлагаемый метод вполне может быть использован при определении общей жесткости воды.

Информацию о составе жесткой воды, видах жесткости и способах ее устранения можно почерпнуть из табл. 1.

Таблица 1.

Жесткость воды и способы ее устранения

Состав жесткой воды

Вид жидкости

Способы устранения

по составу

по способу её устранения

Са 2 +
Mg 2+

карбонатная

временная

1) нагревание

2) добавка извести

3) пропускание через ионообменник

Сl -
N0 - 3

некарбонатная

постоянная

1) добавка соды,

2) пропускание через ионообменник

Сl -
N0 - 3
SO 4 2-
НСО - 3

1) пропускание через ионообменник

Обнаружение хлорид – ионов. К 5 мл пробы воды прибавили 1 каплю азотной кислоты и 0,5 мл раствора нитрата серебра. Помутнения не было. Значит, хлор в воде отсутствует. Концентрацию хлорид - ионов определили по таблице равной 1 мг/л. Норма.

Обнаружение сульфат - ионов. К 5 мл пробы воды прибавил 1 каплю соляной кислоты и прилили 0,5 мл раствора хлорида бария. Наблюдали небольшое помутнение. Концентрацию хлорид-ионов определил по таблице равной менее 10 мг/л. Допустимая концентрация.

Обнаружение катионов свинца . В пробирку налили 5 мл воды, прибавили 1 мл раствора реагента - бихромата калия. Изменений окраски не наблюдалось. Вывод: катионов свинца в воде нет.

Определение содержания общего железа. В пробирку налили 5 мл исследуемой воды, добавили 1 каплю концентрированной НNO 3 и 1 мл 20%-ного раствора роданида аммония. Наблюдал слабо желтовато-розовую окраску, определяли и приблизительную концентрацию железа в соответствии с таблицей, она равна 0,25 мг/л (близко к предельно допустимому) (Таблица 1).

Таблица 1

Основные компоненты минерального состава воды и их допустимые концентрации

Компонент минерального состава воды Предельно допустимая концентрация (ПДК)
Натрий (Na+) 200 мг/л
Кальций (Ca 2 +) 200 мг/л
Магний (Mg 2 +) 100 мг/л
Железо общее (Fe 3 +) 0,3 мг/л
Марганец (Mn 2 +) 0,1 мг/л
Гидрокарбонат (HCO 3 –) 1000 мг/л
Сульфат (SO 4 2–) 500 мг/л
Хлорид (Cl –) 350 мг/л
Карбонат (CO 3 2–) 100 мг/л
Нитрат (NO 3 1–) 45 мг/л
Фтор (F –) 0,7 - 1,5 мг/л

Таблица 2

Результаты исследования приблизительной

концентрации ионов хлора, сульфат-ионов, железа и свинца в исследуемой питьевой воде

Проведение опыта на Cl - , Концентрация ионов хлора Наблюдения
5 мл пробы+0,5 мл (5г нитрата серебра растворили в 95 г воды)+ 1 капля азотной кислота (1:4) более 100 мг\л. Белый осадок
более 10 мг\л Помутнение раствора
более 1 мг\л. Опалесценция
Проведение опыта SO 4 2- , Концентрация ионов сульфат Наблюдения
5 мл пробы+1 капля (16 мл соляной кислоты плотн 1,19 растворили в 100 мл воды) +0,5 мл (10г хлорида бария растворили в 90 г воды) более 10 мг\л. Белый осадок
более 1 мг\л. Опалесценция
менее 1 мг\л. Нет изменений
Проведение опыта Fe 3 + Концентрация ионов железа Наблюдения
5 мл пробы+1 капля к.азотной кислоты +1 мл 20% раствора роданида аммония до 0,25 мг\л. Слабо желтовато-розовая окраска
до 1 мг\л Желтовато-розовое
более 2 мг\л. Желтовато-красное
Проведение опыта Pb 2+ Концентрация ионов свинца Наблюдения
5 мл пробы+1 мл (10 г бихромата калия растворить в 90 мл воды) 100 мг\л. Жёлтый осадок
20 мг\л Помутнение раствора
0,1 мг\л. Опалесценция
Менее 0,1 мг/л Нет изменений

Анализ воды проводился также в лаборатории АО Пигмент и ООО «Независимой лаборатории ИНВИТРО». Результаты исследований прилагаются. Таблица № 3.

Таблица 3

Заключение по анализу пробы воды из реки Ворона от 27.08.13.

№ п/п Наименование показателя Норма Результаты анализа
Водородный показатель, pH 6,0-9,0 6,4
Жесткость общая, мг×экв/л, 7,0 5,6
Массовая доля железа (Fe), мг/л, не более 0,3 0,15
Массовая доля сульфатов (), мг/л, не более 500 42,8
Электропроводность, mS/см ‑* 624
Массовая доля хлоридов (), мг/л, не более 350 11

* ‑ дистиллированная вода н/б 5 mS/см, для артезианской воды показатель не нормируется (фактически 600-900 mS/см )

Начальник аналитической лаборатории ЦЛ И.П. Ботова

error: