Белковый обмен. Орнитиновый цикл - цикл образования мочевины

Белки занимают ведущее место среди органических элементов, на их долю приходится более 50 % сухой массы клетки. Они выполняют ряд важнейших биологических функций.

Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков - актина и миозина.

Поступающий с пищей из внешней среды белок служит пластической и энергетической целям. Пластическое значение белка состоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обеспечении организма энергией, образующейся при расщеплении белков.

В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и наряду с этим - синтез белков. Таким образом, белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее - белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).

Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность

Для нормального обмена белков, являющихся основой их синтеза, необходимо поступление с пищей в организм различных аминокислот. Изменяя количественное соотношение между поступающими в организм аминокислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и общему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме - заменимые аминокислоты, а 8 не синтезируются - незаменимые аминокислоты.

Без незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан.

Белки обладают различным аминокислотным составом, поэтому и возможность их использования для синтетических нужд организма неодинакова. В связи с этим было введено понятие биологической ценности белков пищи. Белки, содержащие весь необходимый набор аминокислот в таких соотношениях, которые обеспечивают нормальные процессы синтеза, являются белками биологически полноценными. Наоборот, белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, являются неполноценными. Так, неполноценными белками являются желатина, в которой имеются лишь следы цистина и отсутствуют триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина; и некоторые другие. Наиболее высока биологическая ценность белков мяса, яиц, рыбы, икры, молока.

В связи с этим пища человека должна не просто содержать достаточное количество белка, но обязательно иметь в своем составе не менее 30% белков с высокой биологической ценностью, т. е. животного происхождения.

У людей встречается форма белковой недостаточности, развивающаяся при однообразном питании продуктами растительного происхождения с малым содержанием белка. При этом возникает заболевание, получившее название «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Биологическая ценность одного и того же белка для разных людей различна. Вероятно, она не является какой-то определенной величиной, а может изменяться в зависимости от состояния организма, предварительного пищевого режима, интенсивности и характера физиологической деятельности, возраста, индивидуальных особенностей обмена веществ и других факторов.

Практически важно, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой - других, в сумме могли обеспечить потребности организма.

Азотистый баланс

Это соотношение количества азота, поступившего в организм с пищей и выделенного из него. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка. Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом.

Усвоение азота вычисляют по разности содержания его в принятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного организмом белка, так как в белке содержится в среднем 16% азота, т. е. 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить количество усвоенного белка.

Для того чтобы установить количество разрушенного белка, необходимо знать общее количество азота, выведенного из организма. Азотсодержащие продукты белкового обмена (мочевина, мочевая кислота, креатинин и др.) выделяются преимущественно с мочой и частично с потом. В условиях обычного, неинтенсивного потоотделения количество азота в поте можно не принимать во внимание, поэтому для определения количества распавшегося в организме белка обычно находят количество азота в моче и умножают на 6,25.

Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением массы мышц. В этих условиях происходит задержка азота в организме (ретенция азота).

Белки в организме не депонируются, т. е. не откладываются в запас, поэтому при поступлении с пищей значительного количества белка только часть его расходуется на пластические цели, большая же часть - на энергетические цели.

Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты.

Распад белка в организме протекает непрерывно. Степень распада белка обусловлена характером питания. Минимальные затраты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3-З1/2 раза меньше, чем при полном голодании. Углеводы при этом выполняют сберегающую белки роль.

Распад белков в организме, происходящий при отсутствии белков в пище и достаточном введении всех других питательных веществ (углеводы, жиры, минеральные соли, вода, витамины), отражает те минимальные траты, которые обусловлены основными процессами жизнедеятельности. Эти наименьшие потери белка для организма в состоянии покоя, пересчитанные на 1 кг массы тела, были названы Рубнером коэффициентом изнашивания. Коэффициент изнашивания для взрослого человека равен 0,028-0,075 г азота на 1 кг массы тела в сутки.

Отрицательный азотистый баланс развивается при полном отсутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не исключена возможность дефицита белка при нормальном поступлении, но при значительном увеличении потребности в нем организма. Во всех этих случаях имеет место белковое голодание.

При белковом голодании даже в случаях достаточного поступления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы тела, зависящая от того, что затраты тканевых белков (минимальные в этих условиях и равные коэффициенту изнашивания) не компенсируются поступлением белков с пищей, поэтому длительное белковое голодание в конечном счете, так же как и полное голодание, неизбежно приводит к смерти. Особенно тяжело переносит белковое голодание растущий организм, у которого в этом случае происходит не только потеря массы тела, но и остановка роста, обусловленная недостатком пластического материала, необходимого для построения клеточных структур.

Регуляция обмена белков

Нейроэндокринная регуляция обмена белков осуществляется рядом гормонов.

Соматотропный гормон гипофиза во время роста организма стимулирует увеличение массы всех органов и тканей. У взрослого человека он обеспечивает процесс синтеза белка за счет повышения проницаемости клеточных мембран для аминокислот, усиления синтеза РНК в ядре клетки и подавления синтеза катепсинов - внутриклеточных протеолитических ферментов.

Существенное влияние на белковый обмен оказывают гормоны щитовидной железы - тироксин и трийодтиронин. Они могут в определенных концентрациях стимулировать синтез белка и благодаря этому активизировать рост, развитие и дифференциацию тканей и органов.

Гормоны коры надпочечников - глюкокортикоиды (гидрокортизон, кортикостерон) усиливают распад белков в тканях, особенно в мышечной и лимфоидной. В печени же глюкокортикоиды, наоборот, стимулируют синтез белка.

Белки усваиваются организмом только путем всасывания аминокислот в пищеварительном канале. Белок, введенный под кожу или непосредственно в кровь, вызывает защитную реакцию организма. Синтез белков из аминокислот и их соединений (полипептидов) происходит в клетках организма при участии ферментов в течение всей жизни. В детском и юношеском возрасте белки задерживаются в организме; эта задержка, или ретенция, белков обусловливает рост и развитие организма.

У взрослого человека белки постоянно обновляются; в течение 2-3 суток примерно половина всех белков разрушается и такое же количество синтезируется из аминокислот, доставляемых пищей, а также образовавшихся при распаде белков (ресинтез). Неиспользованные аминокислоты распадаются в печени и почках с отщеплением молекулы аммиака (дезаминируются) и освобождением энергии. В печени аммиак синтезируется в мочевину, которая выводится из организма с мочой. Остаток молекулы аминокислоты, не содержащий азота, превращается в глюкозу, которая распадается, освобождая энергию. Кроме мочевины, белки распадаются на мочевую кислоту, креатин, креатинин, холин, гистамин и другие вещества.

Содержание азота в белках равно в среднем 16% от их веса. Поэтому при умножении количества азота, поступившего в организм с пищей, на 6,25 можно установить количество белка, содержащегося в пище. А при умножении количества азота в кале, моче и поте, на 6,25 можно установить количество белка, которое после разрушения удалено из организма в виде продуктов его распада. Сравнение обоих количеств азота позволяет определить азотистый баланс организма, или соотношение количества белка, поступившего в организм, с количеством белка, удаленного из организма. Когда оба количества азота равны друг другу, имеется азотистое равновесие, которое характерно для взрослого человека. Азотистое равновесие у взрослого человека зависит от того, что белок, даже при увеличении его поступления с пищей, подвергается распаду и либо после дезаминирования превращается в углеводы и жиры, либо удаляется из организма в составе кала, мочи и пота в виде остаточных продуктов. Во взрослом организме запасы белка не создаются.

У детей имеется положительный азотистый баланс, так как в растущем организме происходит ретенция белков и приход белков превышает их расход.

При голодании, в результате уменьшения прихода белков, а также при действии на организм больших доз ионизирующего облучения вследствие увеличенного распада белков имеется отрицательный азотистый баланс, т. е. расход белка больше его прихода.


Белки животного и растительного происхождения. Белки животного происхождения, находящиеся в мясе, яйцах и молоке, содержат все аминокислоты, необходимые для синтеза белка и роста организма: лизин, тирозин, триптофан, лейцин, изолейцин, гистидин, аргинин, валин, метионин, фенилаланин, глицин, аланин, серин, цистин, цистеин, треонин, аспарагин, аспарагиновую кислоту, глютаминовую кислоту, глютамин. Из аминокислот в организме образуются гормоны и ферменты. Белки, содержащие все аминокислоты, необходимые для синтеза белка, называются полноценными. Биологическая ценность белка определяется по количеству его, которое образовалось из 100 г белка пищи. Белки животного происхождения примерно в 1,5 более полноценные, чем растительные, но некоторые белки животного происхождения, например желатина, не содержащая триптофан и тирозин, являются неполноценными.

Белки растительного происхождения, находящиеся в ржаном хлебе, картофеле, кукурузе, дрожжах, ячмене и других растительных продуктах, не могут считаться полноценными, так как в них отсутствуют одна или несколько аминокислот, которые не могут синтезироваться в организме или их очень мало. Например, в пшенице и ячмене мало лизина, в кукурузе мало лизина и триптофана. В белках растительного происхождения - недостаток лизина, триптофана и метионина. Некоторые аминокислоты могут заменить друг друга, например фенилаланин заменяет тирозин. Но из 20 природных аминокислот, содержащихся в белках, 10 не могут синтезироваться в организме: валин, лейцин, изолейцин, треонин, фенилаланин, лизин, метионин, гистидин, аргинин и триптофан. Отсутствие любой из этих 10 аминокислот нарушает здоровье. Например, лизин, цистин и валин возбуждают сердечную деятельность. Малое содержание цистина в пище задерживает рост волос, увеличивает содержание сахара в крови. Для полноценного питания рекомендуется концентрат трех дефицитных аминокислот: лизина, метионина и триптофана - белип, содержащий равные весовые части трески и пресного кальцинированного творога, полученного из цельного обезжиренного молока.

Суточная потребность в белках. Общее количество белков, необходимых взрослому человеку в сутки при условии введения в организм достаточного количества жиров и углеводов, зависит главным образом от характера выполняемой физической работы, а также от температуры внешней среды. В среднем для взрослого человека суточная норма белка при смешанной пище в г на кг веса тела: при легкой физической работе 1-1,5, при работе средней тяжести 2, при тяжелой физической работе и в условиях длительного холода 3-3,5. Дальнейшее увеличение суточной нормы белка нецелесообразно, так как нарушает функции нервной системы, печени и почек. Белки должны составлять около 14% калорийности суточного рациона.

Обмен веществ и энергии - это совокупность превращений веществ и энергии в живых телах и обмен веществ и энергией между организмом и окружающей средой, направленный на воспроизведение живой структуры. Это основное свойство которое отличает живое от неживого. Все организмы обмениваются с окружающей средой веществом, энергией, информацией.

В зависимости от способа получения углеводов делятся на:

l Аутотрофные - используют в качестве источника углевода углекислый газ, из которого они способны синтезировать органические соединения

l Гетероторофные - питающиеся за счет других. Живут за счет получения углевода в виде сложных органических соединений, например глюкозы.

По форме потребляемой энергии:

l Фототрофные - используют энергию солнечного света. Сине-зеленые водоросли, зеленые клетки растений, фотоситещирующие бактерии.

l Хемотрофные - клетки, которые живут за счет химической энергии, освобождающейся в ходе окислительо-востановительных процессов.

Принято выделять промежуточный обмен - превращение веществ и энергии в организме с момента поступления переваренных веществ в кровь и до момента выделения конечных продуктов. Он складывается из 2х процессов - катаболизма - диссимиляции и анаболизма - ассимиляция.

Катаболизм - расщепление крупных молекул окислительным путем, процесс идет с освобождением энергии, заключенной в химических связях. Эта энергия запасается в АТФ.

Анаболизм - ферментативный синтез из более простых соединений крупномолекулярных клеточных элементов. Происходит образование полисахаридов, белков, нуклеиновых кислот, липидов. Процессы анаболизма идут с поглощением энергии.

Процессы анаболизма и катаболизма тесно взаимосвязаны и протекаю через определенные стадии.

Процессы катаболизма.

1-ая стадия - крупные органические молекулы распадаются на структурные специфические блоки. Полисахариды распадаются до пептоз и гексоз, белки до аминокислот, жиры до глицерина и ирных кислот, холестерина. Нуклеиновые кислоты до нуклеотидов и нуклеозтдов.

2-ая стадия катаболизма - характеризуется образованием более простых молекул, их число уменьшается и существенным моментом является образование продуктов, которые являются общими для обмена разных веществ. Это узловые станции, которые соединяют разные пути обмена. Фумарат, сукцинат, пируват, ацетил-КоА, альфа-кетоглутарат.

3-я стадия - эти соединения вступают в процессы терминального окисления, котоыре осуществляются в цикле трикарбоновых кислот. Происходит из окончательный распад до углекислого газа и воды.

Процессы анаболизма протекают тоже в три стадии.

1-ая стадия анаболизма может рассматриваться как третья стадия катаболизма. Исходные продукты синтеза белка - альфа-кетокислоты. Они также нужны для образования аминокислот, т.к. на следующей стадии к альфа-кетокислотам присоединяются аминогруппы. Что происходит в реакциях аминирования и трансаминирования - способствуют превращению альфа-кетокисот в аминокислоты. Дальше синтезируются полипептидные цепи белка.

Обмен веществ имеет 3 ключевых значения:

  1. Пластическое - синтез органических соединений - белков, углеводов, липидов, клеточных компонентов.
  2. Энергетическое значение - происходит извлечение энергии из окружающей среды и преобразуется в энергию макроэргических соединений.
  3. Обезвреживающее значение. Обезвреживаются продукты распада веществ и осуществляется их выведение. Обмен веществ - как химическое производство, а все хим. Заводы образуют побочные продукты, которые загрязняют окружающую среду.

Методы изучения делятся на:

l Обмена веществ - основной метод - метод составления баланса. По соотношению веществ, поступивших в организм с пищей с продуктами и продуктами выделения. Содержание питательных веществ могут быть определены по таблицам - сколько белка, жира и углевода. Или содержание питательных веществ может быть определено экспериментально. Белок может быть определено по количеству полученного азота. Содержание жира - извлекают жир эфиром, а углеводы определяют колориметрическим способом. Конечные продукты распада - углекислый газ и вода, а белки дают содержащие продукты, но они выводятся из организма с мочой.

l Обмена энергии

Обмен белка.

Белки имеют особое значение для организма. Они обладают двумя функциями:

  1. Пластическая - входят в состав всех веществ,
  2. Энергетическая - 1 г белка дает 4,0 ккал (16,7 кДж), 1 ккал = 4,1185 кДж.

Нормы суточного потребления отличаются в разных странах: 1-1,5 г/кг в России, 0,5-0,8 г/кг - США. Для детей - от 1 до 4 лет - 4 г/кг, так как ребенок растет.

Организм получает белок из двух источников:

  • Экзогенный белок - белок пищи - 75-120 г/сутки
  • Эндогенный белок - секреторные белки, белки кишечного эпителия - 30 - 40 г/сутки.

Эти источники обеспечивают поступление белка в пищеварительный тракт, где будет происходит его расщепление до аминокислот. Распад аминокислот происходит в печени - дезаминирование, трансаминирование, когда аминокислота теряет группу и превращается в аммиак, аммоний или мочевину, и эти продукты подлежат выведению из организма.

Особенностью белка является то, что он построен из 20 аминокислот. Аминокислоты могут быть заменимыми и незаменимыми(не могут синтезироваться в организма - триптофан, лизин, лейцин, валин, изолейцин, треонин, метионин, фенилаланин, гистидин и аргинин). Полноценные белки - содержат незаменимые аминокислоты. Неполноценные белки - содержат не все незаменимые аминокислоты.

Биологическая ценность белка - под ней понимается то количество белка, специфическое для данного организма, которое образуется из 100 г поступившего белка с пищей. Молоко - 100, кукуруза - 30, пшеничного хлеба — 40.

Аминокислоты, которые образуются в кишечнике в ходе расщепления белка подвергаются процессам всасывания, причем для аминокислот существуют специфические натрий зависимые переносчики. Такой комплекс проходит через мембрану. Аминокислоты поступят в кровь, а натрий будет в натрий - калиевой АТФазе (насоса), который поддерживает градиент для натрия. Такой транспорт называется вторично активным. L-изомеры аминокислот проникают легче, чем D. На транспорт аминокислот влияет строение молекулы. Легко проходит аргинин, метионин, лейцин. Фенилаланин проникает медленней. Очень плохо всасывается аланин и серин. Одни аминокислоты могут способствовать прохождению других. Например глицин и метионин облегчают поход друг другу.

Распад осуществляется в печени. Основной путь распада - дезаминирование, в ходе которого образуются без азотистый остаток и образуется азотистые соединения. Без азотистые осадки могут превращаться в углеводы и жиры и затем использовать в ходе получения энергии. Азотистые соединения удаляются с мочой. Второй путь - это трансаминирование. Идет с участием трансаминаз. При повреждении клеток трансаминазы могут проходить в плазму крови. При гепатитах, инфарктах увеличивается содержание трансаминаз в крови. Это диагностический признак.

Метод азотистого баланса.

Отложить азот про запас не возможно. В крови запас аминокислот составляет 35-65мг %. Существует понятие минимума (1 г на 1кг веса). Азот в белке содержится в строго определенных соотношения - 1 г азота содержится в 6,25 г белка. Для определения азотистого баланса нужно знать поступление белка с пищей. Часть белка пройдет через ЖКТ транзитом. Нужно определить азот кала. По разнице азота пищи и азота кала, мы определим азот усвоенного белка, т.е. тот, который поступил в кровь и пошел в реакции обмена. Распавшийся белок оценивается по азоту мочи. Азотистый баланс оценивается между усвоенным и распавшимся:

Состояние азотистого баланса:

l А-B=C - азотистое равновесие, у здорового взрослого человека с достаточным потреблением белка с пищей. Чтобы поддержать надо употреблять 1 г белка на кг веса. Но это равновесие может быть не устойчиво - стресс, физическая работа, тяжелые заболевания.

l Белковый оптимум - 1,5 кг тела. Из этого нужно строить свой рацион

l А-B>C - положительный азотистый баланс. Это состояние характерно у растущего организма. Задержка белка в организме, и он расходуется на процессы роста. Это может быть состояние при тренировках - нарастание массы мышц. Процесс восстановления организма после заболевания, при беременности.

l A-B<С. Распад преобладает над усвоением - отрицательный азотистый баланс - в старческом возрасте, пр белковом голодании или употреблении не полноценных белков и при тяжелых заболеваниях, сопровождающихся распадом ткани.

Углеводный обмен.

Человек получает углеводы в трёх формах. Это:

  1. Дисахарид сахарозы
  2. Дисахарид лактозы
  3. Полисахариды
    • Амилоза с неразветвленной цепью
    • Аминопептин - с разветвленной цепью
    • Целлюлоза - с растительными продуктами. Но нет фермента для ее расщепления

Суточное потребление углеводов составляет от 250 до 800, 7 г.кг.сутки. Энергетическая ценность глюкозы составляет 1г., глюкозы - 3,75 ккал. или 15,7 кДж.

В пищеварительном тракте углеводы распадаются до моносахаридов, которые подвергаются всасыванию. Начальное расщепление осуществляется амилазой слюны. Основное переваривание в тонкой кишке. Поджелудочная амилаза расщепляет углеводы до олигосахаридов. Далее расщепляются до моносахаридов углеводистыми ферментами в тонкой кишке. Здесь имеются 4 фермента - мальтаза, изомальтаза, лактаза и сахараза.

Конечные продукты расщепления - фруктоза, глюкоза и галактоза. Галактоза и фруктоза отличаются от глюкозы положением групп H и OH. Всасывание - вторичный натрий зависимый транспорт. Переносчики для углеводов присоединяют глюкозу и 2 иона натрия и такой комплекс проходит в клетку за счет разницы концентраций и зарядов натрия. Фруктоза проникает путем облегченной диффузии. Причем внутри клеток эпителия фруктоза превращается в глюкозу и молочную кислоту. Это поддерживает градиент для преодоления глюкозы. Кишечник может всосать до 5 кг углеводов в день. Если нарушается процесс всасывания, то изменяется осмотическое давление(повышается), вода выходит в просвет кишечника - понос. Углеводы подвергаются брожению с образованием газов. Водород, метан и углекислый газ. Они являются раздражающими для слизистой оболочки. На мембране кишечного эпителия - недостаток лактазы, который расщепляет молочный сахар. Очень тяжелое состояние для детей. Если нет лактазы - проблемы с кишечником.

Пути использования моносахаридов в организме .

Они поступают в кровь и образуют сахар крови с нормальным содержанием 3,3-6,1 ммоль/л или 70-120 мг %. Далее поступают в печень и откладываются в виде гликогена. Могут превращаться в гликоген мышц и использоваться при мышечном сокращении. Углеводы могут превращаться в жиры и откладываться в жировых депо, что используется для вскармливания сельскохозяйственнных животных. Углеводы могут превращаться в аминокислоты при присоединение NH2. Они служат энергетическим источником. Для синтеза гликолипидов, гликопротеинов. Поддержание уровня сахара в крови происходит за счет гормонов поджелудочной железы - инсулин (способствует отложению гликогенов), глюкагон - появляется при снижении уровня глюкозы в крови, способствует распаду гликогена в печени. Содержание сахара увеличивает адреналин - увеличивает распад гликогена. Глюкокортикоиды - стимулируют процессы глюконеогенеза. Тироксин(щитовидная железа) Усиливает всасывание глюкозы в кишечнике.

Жировой обмен.

Мужчина -12-18 %, свыше 20% - ожирение, женщина 18-24% , свыше 25% - ожирение.

Суточное потребление жира - от 25 до 160 г или 1 г жира на 1 кг веса. Энергетическая ценность 1 г жира - 9,0 ккал или 37,7 кДж.

Этапы превращения жиров в организме.

  1. Эмульгирование(образование капель размером 0,5-1 мкм)
  2. Расщепление липазами до глицерина и жирных кислот
  3. Образование мицелл(4-6 нм в диаметре) которые содержат - глицерин, жирные кислоты, желчные соли, лецитин, холестерин, жирорастворимые витамины А,Д,Е,К
  4. Всасывание мицелл в энтероциты.
  5. Далее идет образование хиломикронов (до100 нм в диаметре), которые содержат - триглицерилы - 86%, холестерин - 3%, фосфолипиды - 9%, протеины -2 %, витамины.
  6. Извлечение из крови хиломикронов при участии фермента липопротеиновой липазы и кофермента гепарина.
  7. Распад эногенных жиров в жировых клетках происходит под влиянием гормон-зависимой липазы, которая активируется - адреналином, норадреналином, АКТГ, тиреотропным, лютеотропным гормонными, вазопрессином и серотонином.
  8. тормозится - инсулином, простагланином Е.

Комплексы с липопротеинами низкой плотности очень легко проникают через стенку кровеносных сосудов, что приводит к атеросклерозу. Липопротеиы высокой плотности - там развитие атеросклероза меньше. Липопротеины высокой плотности увеличиваются при:

  • регулярной физической нагрузке
  • у тех,кто не курит.

Вещества, образующиеся из ненасыщенных жирных кислот - арахидоновой, линолевой и линоленовой, содержат в своем составе 20 атомов углевода:

  1. Простогландины
  2. Лейкотриены
  3. Простациклеин
  4. Тромбоксан А2 и Б2
  5. Липоксины А и Б.

Лейкотриены - это медиаторы аллергических и воспалительных реакций. Они вызывают сужение бронхов, сужение артериолл, повышение проницаемости сосудов, выход нейтрофилов и эозинофилов в очаг воспаления.

Липоксин А - расширяет микроциркуляторные сосуды, оба липоксина А и Б тормозят цитотоксический эффект Т-киллеров.

Энергетический обмен.

Все проявления биологических процессов связаны с превращением Е. Изучение энергетических процессов даёт нам представление о ходе самого процесса. Получая энергию с пищевыми продуктами, мы получаем макроэргическую энергию (механическая, электрическая, тепловая и другая энергия). За счет этой Е мы способны совершать внешнюю работу, на которую тратиться 20% энергии, а остальное - это тканевая энергия. Соотношение между поступившей и выделившейся энергией называется энергетическим балансом, который находится в состоянии равновесия. Запасание Е в организме не превышает 1 % энергии. Изучение энергетического баланса имеет теоретическое(приложимость закона сохранения Е и к живым системам) и практическое значение (даёт возможность для научного обоснования правильного составления рациона).

Энергетическая ценность питательных веществ определяется колориметрическим методом, т.е. сжигание веществ в колориметре. Были определены колориметрические коэффициенты:

Белки - 5,7 ккал/г

Углеводы - 3,75 ккал/г

Жиры - 9,0 ккал/г.

В организме происходит распад окислительным путем, но до углекислого газа и воды (при поступлении в организм).

Правило Гесса (1836) :

Тепловой эффект химического процесса, развивающийся через ряд последовательных реакций, не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием веществ, участвующих в реакции.

В организме 1 г белка дает 4 ккал/г. Зная количество граммов поглощенных веществ мы можем высчитать энергетический баланс. Для определения расхода Е были предложен метод прямой колориметрии, основанный на определении количества всей тепловой энергии. Были сконструированы колориметры и для человека. Это специальные камеры, в которые можно поместить человека и исследовать выделение энергии.

Метод прямой колориметрии обладает высокой точностью. Этот метод довольно трудоемкий. Этот метод не позволяет исследовать энергетический обмен при разных видах труда. В практическом отношении изучение энергии используют метод непрямой колориметрии . Этот метод основан на определении энергозатрат организмом косвенно по количеству потребленного кислорода и выделенного углекислого газа.

Реакция окисления глюкозы:

C6H12O6 + 6O2= 6CO2 + 6H2O + E,

E=2827 кДж, или 675 ккал/моль, 1 моль глюкозы = 180 г. При окислении 1 г глюкозы будет выделяться 15,7 кДж, или, 3,75 ккал/г.

Чтобы определить, что подвергается окислению, было предложено определение дыхательного коэффициента - отношение выделившегося углекислого газа к количеству поглощенного кислорода. Дыхательный коэффициент для углеводов будет равен 1.

Окисление жира - трипальмитина:

2С51H98O6 + 145 O2= 102 CO2 + 98 H2O,

Следовательно, ДК=102 CO2:145O2=0,7

В случае окисления глюкозы - кислород для воды получается из внутримолекулярного кислорода глюкозы и получаемый кислород идет на CO2. В жирах внутримолекулярного кислорода мало, поэтому он идет не только на CO2, но и на воду.

Определение дыхательного коэффициента дает нам установить, какие продукты подвергаются окислению.

Для метода непрямой колориметрии используется еще один показатель - калорический эквивалент кислорода - количество выделившейся энергии в окислительном процессе при поглощении одного литра кислорода.

1 моль O2 = 22,4 л, а 6 молей O2 занимают объем 134,4 л

КЭ (О2) = 2827 кДж: 134,4л=21,2 кДж/л

Калорический эквивалент кислорода будет зависеть от дыхательного коэффициента.

При уменьшении дыхательного коэффициента на 0,01 калорический эквивалент кислорода уменьшается на 12 малых калорий.

E= x V(O2) в л/ мин.,

где n - число сотых, на которое отличается дыхательный коэффициент.. При изменении ДК на 1 сотую КЭ O2 изменяется на 12 кал. Метод непрямой колориметрии дает подойти к изучению энергии в организме.

Дыхательный коэффициент иногда может быть больше 1. Это происходит в восстановительный период, после совершения мышечной работы. Это связано с тем, что в мышцах, во время нагрузки происходит накопление молочной кислоты и после прекращения нагрузки, молочная кислота начинает вытеснять углекислый газ из бикарбоната. Количество выделившегося углекислого газа может оказаться больше, чем поглощено кислорода.

Еще дыхательный коэффициент может быть больше 1, при переходе углеводов в жиры. Жиры требуют меньшего количества кислорода, для построения молекул. Часть кислорода используется в процессах окисления.

При изучении обмена энергии выделяют основной и общий обмен энергии .

Под основным понимается - величина энергетического обмена для бодрствующего организма в условиях физического и эмоционального покоя, при предельно возможном ограничении функций организма (момент пробуждения). Энергетические затраты в этом состоянии связаны с поддержанием окислительных процессов в клетке. Энергия расходуется на деятельность постоянно работающих органов - почки, печень, сердце, дыхательные мышцы, поддержание минимального тонуса мускулатуры. Исследуют основной обмен при соблюдении следующих условий: положение лежа, мышечный покой, расслабленная поза, при исключении эмоциональных раздражителей, состояние натощак (через 12 часов), при температуре комфорта - 18-20 градусов, при бодрствовании. При таких условиях для среднего мужчины - 1300-1600 ккал. У женщин на 10% меньше, т.е. 1200-1400. Для сравнения основной обмен определяют на кг веса тела - на 1 кг веса тела расходуется 1 ккал за 1 час.

При сопоставлении величины основного обмена у животных, оказалось что чем меньше масса, тем больше будет основной обмен. У мыши - 17 ккал на 1 кг за час. У лошади - 0,5 ккал на 1 кг веса тела. Если расчет производить на 1 поверхности, то величина примерно одинаковая.

Рубнер сформулировал закон поверхности , согласно которому величина основного обмена зависит от соотношения поверхности и массы тела. У человека на 1 кв.м. поверхности выделяется 1000 ккал.

Этот закон не абсолютен, т.е. при одинаковой S поверхности, величина основного обмена у людей может быть различна. Интенсивность обмена энергии определяется не только теплоотдачей, но и теплопродукцией. Теплопродукция зависит от состояния нервной и эндокринной системы. На величину основного обмена влияет возраст. У детей основной обмен выше, чем у взрослых. Это связано с большей интенсивностью окислительных процессов и с ростом организма. Величина основного обмена начинает возрастать со второй половины первого дня жизни и достигает максимальной величины к полутора годам. У новорожденного - величина основного обмена - 50-54 ккал на кг за сутки. В полтора года эта величина 55-60 ккал на кг за сутки. Половые различия - начинают проявляться со второй половины первого года жизни, когда основной обмен у мальчиков становится больше, чем у девочек. Повышение температуры тела на 1 градус увеличивают величину основного обмена на 10%.

Состояние нервной и эндокринной системы - увеличивают гормоны щитовидной железы, гормон роста и адреналин. Систематическое занятие спортом повышает основной обмен, а прекращение резко снижает. Люди, не употребляющие мясо - вегетарианцы, имеют основной обмен ниже. Курение повышает основной обмен на 9%. На основной обмен также влияют внешние факторы. Сезонные колебания - температура, солнечная радиация. В зимние месяцы основной обмен понижен. Затем он начинает повышаться и максимален в летние месяцы. У людей, проживающих на севере, в условиях полярно ночи - снижение основного обмена. Если человек переезжает в среднюю полосу - повышение обмена. Повышение окружающей температуры - снижает основной обмен. Понижение - повышает основной обмен. Определение основного обмена имеет большое клиническое значение. В работе половых желез гипофиза. Для практических целях определяют величину основного обмена по таблицам, которые учитывают вес, возраст, пол.

Отклонение от стандарта не должно превышать 10 %.

В энергетическом обмене выделяют также общий обмен , который складывается из основного обмена и дополнительных энергетических трат, связанных с приемом пищи и выполнением работы в течении суток. Если взять распределение в процентном отношении, то основной обмен затратит 60%. Специфическое динамическое действие пищи добавляет 8% энерготрат. Энергозатраты, связанные с направленной физической нагрузкой 25% и мышечная нагрузка 7%.

Прием пищи оказывает увеличение энергозатрат - это и есть специфическое динамическое действие пищи. Смешанная пища повышает обмен на 15-20%. Изолировано белки повышают на 30-40%, углеводы на 5-10%, жиры на 2-5%.

Основное значение - влияние пищи на процессы клеточного обмена. Происходит усиление химических реакций в клетках, что повышает уровень обмена веществ. Основной расход - синтез белковых клеточных компонентов. У новорожденных отмечается, что каждое кормление увеличивает специфическое - динамическое действие пищи. Максимально при 40-50 вскармливании. Физическая активность является мощным фактором, увеличивающим энергозатраты.

Расход энергии в зависимости от профессиональной деятельности обозначается в зависимости от категории профессий

Коэффициент физической активности

Работники умственного труда

Работники легкого физического труда

Работники средней физического труда

Четвертая

Работники тяжелого физического труда

Работники особо тяжелого физического труда

Коэффициент физической активности - это отношение общих энергозатрат за сутки к величине основного обмена.

Регуляция обмена веществ.

В ходе обмена веществ различают два взаимосвязанных процесса - анаболизма и катаболизма.

Анаболизм Катаболизм

гликоген глюкоза гликоген

ТАГ жиры ТАГ

белки аминокислоты белки

Глюкоза переходит в гликоген, жирные кислоты - в триацилглицериды, аминокислоты - в белки.

Процессы обмена веществ регулируются различными веществами:

анаболизм - инсулином, половыми гормонами, гормон роста, тироксин.

катаболизм - глюкагоном, адреналином, глюкокортикоидами.

Нервная регуляция обменных процессов связано с гипоталамической областью. Разрушение вентромедиальных ядер гипоталамуса повышает потребление пищи и вызывает ожирение. Разрушение латеральных ядер сопровождается отказом от пищи и вызывает похудание. Раздражение паравентрикулярного ядра вызывает жажду, и увеличивает потребность в воде. Укол в области продолговатого мозга вызывает стойкое повышение уровня сахара в крови.

Питание.

Питание - процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ(нутриентов), необходимых для покрытия пластических и энергетических нужд организма, образования физиологически активных веществ.

Нутрициология - это наука о питании.

Различают питание:

  • Естественное
  • Искусственное - клиническое парентеральное, зондовое энтеральное
  • Лечебное
  • Лечебно-профилактическое.

Принципы составления пищевого рациона.

  1. Калорийная ценность пищи - для восполнения энергозатрат.
  2. Качественный состав пищи(содержание белков, жиров, углеводов)
  3. Витаминный состав
  4. Минеральный состав
  5. Усвояемость пищевых веществ

Сбалансированное питание — это питание, которое характеризуется оптимальным соотношением количества и компонентов пищи физиологическим потребностям организма.

Адекватное питание — это питание, при котором имеется соответствие между пищевыми веществами рациона и ферментным и изоферментным спектром пищеварительной системы.

Распределение пищевой ценности при трёхразовом питании:

25-30%-завтрак

45-50%- на обед

25-30% - на ужин

Распределение пищевой ценности при пятиразовом питании:

20% - первый завтрак

5-10% - второй завтрак

1. Общая характеристика обмена веществ в организме.

2. Обмен белков.

3. Обмен жирова.

4. Обмен углеводов.

ЦЕЛЬ: Представлять общую схему обмена веществ в организме, обмен белков, жиров, углеводов и проявления патологии этих видов обмена.

1. Поступив в организм, молекулы пищевых веществ участвуют во множестве различных реакций. Эти реакции, а также остальные химические проявления жизнедеятельности называются обменом веществ, или метаболизмом. Пищевые вещества используются в качестве сырья для син-теза новых клеток или окисляются, доставляя организму энергию.Часть этой энергии необходима для непрерывного построения новых тканевых компонентов, другая расходуется в процессе функционирования клеток: при сокращении мышц, передаче нервных импульсов, секреции кле-точных продуктов. Остальная энергия освобождается в виде тепла.

Процессы обмена веществ разделяют на анаболические и катаболические. Анаболизм (ассимиляция) - химические процессы, при которых простые вещества соединяются между собой с образованием более сложных,что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизм (диссимиляция) - расщепление сложных веществ, приводящее к освобождению энергии, при этом происходит разрушение протоплазмы и расходование ее веществ.

Сущность обмена веществ:1)поступление в организм из внешней среды различных питатель-ных веществ;2)усвоение и использование их в процессе жизнедеятельности как источников энергии и материала для построения тканей;3)выделение образующихся продуктов обмена во внешнюю среду.

Специфические функции обмена веществ:1) извлечение энергии из окружающей среды в форме химической энергии органических веществ;2) превращение экзогенных веществ в строительные блоки, т.е.предшественники макромолекулярных компонентов клетки;3) сборка белков, нуклеиновых кислот и других клеточных компонентов из этих блоков;4) синтез и разрушение биомолекул, необходимых для выполнения различных специфических функций данной клетки.

2. Обмен белков - совокупность пластических и энергетических процессов превращения белков в организме, включая обмен аминокислот и продуктов их распада. Белки - основа всех клеточ-ных структур, являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная потребность в белках (белковый оптимум) для взрослого человека составляет 100-120 г (при трате энергии 3000 ккал/сутки). В распоряжении организма должны быть все аминокислоты (20) в определенном соотношении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (валин, лейцин, изолейцин, лизин,метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей (незаменимые аминокислоты). Другие аминокислоты могут быть синтезированы в организме и называются заменимыми (гистидин,гликокол,глицин,аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин,).Белки делят на биологически полноценные (с полным набором всех незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Основные этапы обмена белков:1) ферментативное расщепление белков пищи до аминокислот и всасывание последних;2) превращение аминокислот;3) биосинтез белков;4) расщепление белков; 5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки тонкого кишечника, аминокислоты по воротной вене поступают в течень,где они немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Белки тела непрерывно расщепляются и синтезируются заново (период обновления общего белка в организме - 80 дней). Если пища содержит больше аминокислот, чем необходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH2, т.е. производят дезаминирование. Другие ферменты, соединяя отщепленные аминогруппы с СО2, образуют из них мочевину, которая переносится с кровью в почки и выделяется с мочой. Белки не откладываются в депо, поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, - не резервные, а ферменты и структурные белки клеток.

Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу, т.е. по соотношению количества азота, поступившегo в организм с пищей и выделенного из него. В норме у взрослого человека при адекватном питании количество введенного в организм азота равно количеству, выведенного из организма (азотистое равновесие). Когда поступление азота превышает его выде-ление, говорят о положительном азотистом балансе, при этом происходит задержка азота в орга-низме. Наблюдается в период роста организма, во время беременности, при выздоровлении.. Когда количество выведенного из организма азота превышает количество поступившего, говорят об отрицательном азотистом балансе.Он отмечается при значительном снижении содержания белка в пище (белковом голодании).

3. Обмен жиров - совокупность процессов превращения липидов (жиров) в организме. Жиры являются энергетическим и пластическим материалом, входят в состав оболочки и цитоплазмы клеток. Часть жиров накапливается в виде запасов (10-30% массы тела). Основная масса жиров - нейтральные липиды (триглицериды олеиновой, пальмитиновой, стеариновой и других высших жирных кислот). Суточная потребность в жирах для взрослого человека 70-100 г. Биологическая ценность жиров определяется тем, что некоторые ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая), необходимые для жизнедеятельности, являются незаменимыми (суточная потребность 10-12 г).и не могут образовываться в организме человека из других жирных кислот, поэтому они должны обязательно поступать с пищей (растительные и животные жиры).

Основные этапы жирового обмена:1) ферментативное расщепление жиров пищи в желудочно-кишечном тракте до глицерина и жирных кислот и всасывание последних в тонком кишечнике; 2) образование липопротеидов в слизистой оболочке кишечника и в печени и транспорт их кровью;3) гидролиз этих соединений на поверхности клеточных мембран ферментом липопротеидлипазой, всасывание жирных кислот и глицерина в клетки, где они используются для синтеза собственных липидов клеток органов и тканей. После синтеза липиды могут подвергаться окисле-нию, выделяя энергию, и превращаться в конечном итоге в углекислый газ и воду (100 г жиров дает при окислении 118 г воды). Жир может трансформироваться в гликоген, а затем подвергаться окислительным процессам по типу углеводного обмена. При избытке жир откладывается в виде запасов в подкожной клетчатке, большом сальнике, вокруг некоторых внутренних органов.

С пищей, богатой жирами, поступает некоторое количество липоидов (жироподобных веществ) - фосфатидов и стеринов. Фосфатиды необходимы организму для синтеза клеточных мембран, они входят в состав ядерного вещества, цитоплазмы клеток. Фосфатидами особенно богата нервная ткань. Главным представителем стеринов является холестерин. Он также входит в состав клеточных мембран, является предшественником гормонов коры надпочечников, половых желез, витамина D, желчных кислот. Холестерин повышает устойчивость эритроцитов к гемолизу, служит изолятором для нервных клеток, обеспечивая проведение нервных импульсов. Нормальное содержание общего холестерина в плазме крови 3,11-6,47 ммоль/л.

4. Обмен углеводов - совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для непосредственного использования (глюкоза) или образуют депо энергии (гликоген), являются компонентами сложных соединений (нуклеопротеиды, глико-протеиды), используемых для построения клеточных структур.Суточная потребность 400-500 г.

Основные этапы углеводного обмена: 1) расщепление углеводов пищи в желудочно-кишеч-ном тракте и всасывание моносахаридов в тонком кишечнике;2) депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях; 3) расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли (мобилизация гликогена);4) синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;5) превращение глюкозы в жирные кислоты; 6) окисление глюкозы с образованием углекислого газа и воды.

Углеводы всасываются в пищеварительном канале в виде глюкозы, фруктозы и галактозы. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена. Процесс синтеза гликогена в печени из глюкозы называется гликогенезом (в печени содержится в виде гликогена 150-200 г углеводов). Часть глюкозы попадает в общий кровоток и разносится по всему организму, используясь как основной энергетический материал и как компонент сложных соединений (гликопротеиды, нуклеопротеиды).

Глюкоза является постоянной составной частью (биологической константой) крови. Содержание глюкозы в крови в норме 4,44-6,67 ммоль/л, при увеличении ее содержания (гипергликемии) до 8,34-10 ммоль/л она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л появляется чувство голода, до 3,22 ммоль/л - возникают судороги, бред и потеря сознания (кома). При окислении глюкозы в клетках для получения энергии она в конечном итоге превращается в углекислый газ и воду. Распад гликогена в печени до глюкозы - гликогенолиз. Биосинтез углеводов из продуктов их распада или продуктов распада жиров и белков - гликонеогенез. Расщепление углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием молочной и пировиноградной кислот - гликолиз.

Когда поступление глюкозы превышает потребность, печень превращает глюкозу в жир, который откладывается про запас в жировых депо и может быть использован в будущем как источ-ник энергии. Нарушение нормального обмена углеводов проявляется повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена наблюдается при сахарном диабете. В основе болезни лежит недостаточность инкреторной функции поджелудочной железы. Вследствие недостатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой..

На основе чего стояться практически все планы питания? На белке! Хочешь похудеть – ешь больше белка. Хочешь набрать мышечную массу – ешь больше белка. Как работает этот универсальный ? Давайте попробуем разобраться в таком вопросе, как обмен белков в организме человека.

Общие сведения

Как и в случае с другими нутриентами, процесс белкового обмена осложнен тем, что это – не конечный продукт , а, значит, он должен пройти первичную трансформацию, благодаря которой приобретет нормальный вид для организма. Все дело в структуре молекулы белка. В первую очередь – это сложная структура с большим количеством внутренних связей. Как ни странно, но практически все органические соединения состоят из белковых тканей, или связаны теми или иными видами .

Аминокислота – это базовая единица. Для простейшего сравнения мы можем проводить аналогии с глюкозой или ненасыщенными жирными кислотами, до которых распадается наша пища. Если все углеводы распадаются на одинаковые элементы, как и жиры, то, на какие аминокислоты распадется белок, зависит от его изначального состава и способа приготовления.

Так, изначально белок находиться в своей завершенной сложной структуре. И в этом виде, наш организм не способен его усваивать вовсе. Пробовали ли вы есть сырое мясо или яйца? Сколько всего вы можете съесть такого продукта в граммах, чтобы вам не стало плохо? Обычно, для нормального человека – это ограничивается 100-150 граммами, а то и меньше. Поэтому традиционно белок готовят на огне. В этот момент, под воздействием температуры, происходит его денатурация. Разрушение связей, которые удерживают молекулу в стабильном состоянии, называют денатурацией. Только в сильно денатурированном виде, наш организм способен справиться с дальнейшим разложением белка на аминокислоты. И даже в этом случае он прилагает значительные усилия для разрыва связей, чтобы не повредить сами аминокислоты, так как в случае повреждения, аминокислоты пережигаются до уровня простых углеводов.

Этапы распада белков в организме

Естественно, что первичный процесс переваривания, как и синтез новых тканей, происходит не одномоментно. Есть определенные ограничения, как в скоростном, так и в объемном метаболизме белков в клетках организма. Постараемся рассмотреть подробнее.

В первую очередь, идет процесс первичного переваривания. В отличие от метаболизма жиров или карбогидратов. Даже этот этап можно разделить на 2: первичное денатурирование белков до более простых кислот и дальнейшее всасывание в кишечнике.

Запомните: именно кишечник, а не желудок, отвечают за преобразование белков в аминокислоты и их дальнейшее всасывание.

Дальше у белка есть 2 пути. Первый путь – это когда в организме имеется недостаток в калориях. В этом случае, все аминокислоты, попавшие в кровь, закрывают дыры в разрушенных тканях, а оставшиеся пережигаются на энергию. В случае, если баланс калорийности и трат положительный, или организм имеет достаточно разогнанный метаболизм, то здесь ситуация другая. В этом случае аминокислоты проделают сложный путь и трансформируются во все необходимые для поддержание нормального функционирования сегменты, а из остатка будет синтезирован избыток мышечной ткани.

Факторы, влияющие на скорость и объем синтеза белка из внешних аминокислот

Рассматривая белковый обмен, как комплексный процесс, нужно учесть все факторы, которые влияют на синтез новых белковых структур из стандартных аминокислот. Так как при нарушении любого из них, все полученные путем сложной ферментации и денатурации аминокислоты просто уйдут в качестве энергии.

  1. Тестостерон. Он отвечает за потребность синтеза тканей, отвечающих за качество мышечной массы.
  2. Холестерин. Отвечает за синтез из белковых структур коллагена, косвенно влияет на уровень половых гормонов.
  3. Протеаза. От количества этого фермента зависит, как долго будет перевариваться белок и денатурировать. Если имеется недостаток протеазы, белок может выйти из кишечника так до конца и не переварившись.
  4. Уровень . От этого зависит базовая потребность и расход внутренних запасов белка в течение дня. Для людей с большим уровнем базального метаболизма нужно больше белка в день для поддержания всех функций.
  5. Скорость метаболических процессов. От этого зависит базовая потребность и расход внутренних запасов белка в течение дня. Для людей с большим уровнем базального метаболизма нужно больше белка в день для поддержания всех функций
  6. Дефицит/избыток энергии. Если имеется избыток калорийности, то белок будет заполнять и создавать новые структуры. В случае дефицита – он будет просто закрывать дыры. А в случае экстремального дефицита калорийности, белок просто будет пережжен до уровня простейшей энергии.

Виды белков

Несмотря на кажущуюся простоту, структура белковой ткани настолько сложна, что характеризуют их исключительно по аминокислотному составу. В то же время, существуют упрощенные классификации:

  1. По типу. Здесь находятся растительные и животные белки. На самом деле, их различие в наличии полного или неполного аминокислотного состава.
  2. По источнику белка. В этом случае, классификация использует политику полезных нутриентов, которые содержаться в тканях помимо аминокислот.
  3. По скорости восприятия.

Рассмотрим полную классификацию белковых продуктов для того, чтобы понять, как те или

иные изделия метаболизируются в нашем организме.

Тип белка Источник белковой ткани Скорость усвоения Аминокислотный состав Входящие аминокислоты
Сывороточный Сыворотка, и классический сывороточный протеин . Относительно высокая Полный
Молочный Любые молочные продукты. Начиная от молока и заканчивая сыром. Относительно высокая Полный Изолейцин, лейцин, валин, гистидин, аргинин, фенилаланин, триптофан, лизин.
Мясной Мышечные ткани животного происхождения. Относительно высокая Полный Изолейцин, лейцин, валин,триптофан, лизин.
Яичный Яйца различных животный. Относительно невысокая Полный Изолейцин, лейцин, валин.
Соевый Синтезируется или добывается из растительной сои. Относительно невысокая Неполный Изолейцин, лейцин, валин, триптофан, лизин.
Растительный В основном, это тот белок, который мы получаем с крупами, макаронами и выпечкой. Предельно низкая Неполный Изолейцин, гистидин, аргинин, лейцин, валин.
Другие источники белка В основном, это орехи или продукты синтезированного белка. Вариативно Зависит от самого источника белка Изолейцин, лейцин, валин. Остальное зависит от самого источника белка.

Белок и спорт

Для поддержания нормального уровня белкового метаболизма обычному человеку нужно употреблять порядка 1-го грамма чистого белка полного аминокислотным составом на килограмм тела. В то же время, спортсменам белок более важен. Поэтому они не только употребляют значительно большее количество белка, но и делят его на разные типы и употребляют в разное время. Так, в частности из-за возможности белковых тканей полностью останавливать катаболизм в мышечных тканях, очень часто быстрым источником белка является сыворотка или синтетический белок с предельной скоростью усваивания. В то же время, для замедления ночного катаболизма, спортсмены используют белок с низкой скоростью усваивания, которая помогает в ночное время поддерживать нормальный аминокислотный баланс в организме. Традиционно для этого используют творог или его субстраты.

Однако для чего спортсменам белок? Все очень просто. Для спортсмена обмен белков – это:

  1. Возможность замедлить катаболические реакции.
  2. Естественный строительный материал.
  3. Способ увеличить энергоемкость мышечных структур.
  4. Возможность ускорить восстановление.
  5. Возможность увеличить силовые показатели.
  6. Предшественник саркоплазматической и миофибриллярной гипертрофии.

Нарушение обмена белковых тканей

Очень часто, рассматривая хронические и клинические нарушения обмена метаболизма у человека, люди не затрагивают процессы нарушения обмена белков. А ведь его намного легче получить, чем нарушение метаболизма в целом. Нарушение обмена белков получается в виду следующих причин:

  1. Нарушение кислотной среды желудка и кишечника. В этом случае происходит распад не всех белков на аминокислоты, в виду чего возникает вздутие и проблемы со стулом.
  2. Дисферментация в желудке. Белки не усваиваются организмом в целом. Для решения проблемы нужно обратиться к гастроэнтерологу, в качестве временной меры может выступить прием ферментов. Однако дисферментация – серьезная проблема человека, которая может привести к более сложным для лечения последствиям.
  3. Нарушение синтеза белковых тканей. Это связано с гормональными нарушениями. При этом синтез белковых тканей внутренних органов обычно не затрагивается. Затрагивается синтез мышечной ткани. Обычно свидетельствует о недостатке гормона тестостерона или проблем, связанных с расщеплением белков и транспортировкой некоторых видов аминокислот.
  4. Нарушение выделения гормонов. Внешние проявления проявляются в виде чрезмерного синтеза мышечной ткани или недостаточного. Однако стоит помнить, что, если это нарушение не было вызвано искусственно, то такое нарушение может привести к образованию опухолей и раковых новообразований
  5. Нарушение уровня холестерина. При переизбытке холестерина, белки связывают его, тем самым используясь не по назначению. Кроме того переизбыток холестерина является нарушением в планировании питания, и может привести к таким осложнениям как инфаркт и инсульт.

В зависимости от причины, нарушение обмена белков может привести к разным последствиям. Однако в отличие от нарушения жирового обмена, он приведет не только к тому, что вы наберете лишние килограммы, но и может полностью вывести ваш организм из строя. Некоторые болезни, связанные с нарушением белкового обмена – панкреатит и панкреонекроз, могут и вовсе привести к смертельному исходу. Поэтому не стоит пренебрегать качественной белковой пищей в вашем рационе.

error: