Самодельный фонарик на светодиоде cree. Характеристики светодиодов для фонариков

Во времена увлечения туризмом был приобретен фонарь Duracell c мощной криптоновой лампой на двух больших батарейках типоразмера D (в советском варианте тип 373). Светил отлично, но высаживал батарейки часа за 3-4.

Кроме того, дважды случилась неприятность - батарейки потекли и электролитом залило все внутри фонаря. Контакты окислились, покрылись ржавчиной и даже после чистки и установки новых элементов питания, фонарь уже не внушал доверия, а уж батарейки тем более. Выбросить было жалко, а не имение возможности использовать, натолкнуло на мысль переделать фонарь на модные сейчас литиевый аккумулятор и светодиод. С полгода в закромах лежал литиевый аккумулятор Sanyo 18650 емкостью 2600 мА/ч, у китайских товарищей выписал вот такой светодиод (якобы Cree XML T6 U2) с рабочим напряжением 3-3,6 В, током 0,3-3 А (опять же, якобы - мощностью 10 Вт), световым потоком 1000-1155 люмен, цветовой температурой 5500-6500 К и углом рассеивания 170 градусов.

Поскольку опыт переделки фонарей на питание от литиевых аккумуляторов уже имелся ( и ), то решил пойти тем же путем: применить хорошо зарекомендовавшую себя связку: АКБ 18650 и контроллер заряда TP4056. Оставалось решить одну проблему - какой драйвер использовать для светодиода? Простым токоограничивающим резистором тут не отделаешься - мощность светодиода пусть и не 10 Ватт, как утверждают китайские товарищи, но все же. Изучая материал по «драйверостроению для мощных светодиодов» набрел на очень интересную, и как оказалось, часто применяемую микросхему АМС7135. На основе данной микросхемы китайцы давно и удачно завалили планету своими фонарями). Принципиальная схема питания мощного светодиода на основе АМС7135.

Как видим, допускается питание в диапазоне 2,7...6 В, а это довольно широкий спектр источников питания, в том числе и литиевые аккумуляторы. Задача чипа - ограничить ток, протекающий через светодиод на уровне 350 мА.
Согласно информации производителя чипа, конденсатор Со нужно использовать, если:

  • длина проводника между АМС7135 и светодиодом больше 3 см;
  • длина проводника между светодиодом и источником питания больше 10 см;
  • светодиод и микросхема не установлены на одной плате.

В реальности производители фонарей зачастую пренебрегаю этими условиями, и исключают конденсаторы из схемы. Но как показал эксперимент - напрасно, о чем несколько позже. К дополнительным преимуществам ИС типа АМС7135 можно отнести наличие встроенной защиты при обрыве, КЗ светодиода и диапазон рабочих температур -4О...85°С. Подробно документацию на чип АМС7135 можно .

Схема электрическая фонаря

Еще одной важной и крайне полезной особенностью данной микросхемы является то, что их можно устанавливать параллельно для увеличения тока, протекающего через светодиод. В результате родилась такая схема:

Исходя из нее, ток протекающий через светодиод, составит 1050 мА, что на мой взгляд, более чем достаточно для совсем не тактического, а хозяйственного фонаря. Далее приступил к монтажу все в единую систему. При помощи дремеля в корпусе фонаря удалил направляющие для батареек и контактные шины:


Так же дремелем убрал посадочное гнездо для криптоновой лампы и сформировал площадку для светодиода

Поскольку мощный светодиод во время работы выделяет много тепла, то для его рассеивания решил применить теплоотвод, снятый с материнской платы.


По задумке, светодиод, теплоотвод и головная часть фонаря с отражателем будут создавать одно целое и накручиваясь на корпус фонаря не должны ни за что цепляться. Для этого обрезал грани теплоотвода, просверлил отверстия для проводов и приклеил светодиод к теплоотводу термоклеем.


Как известно диод - это токовый прибор, питать его нужно постоянным током, а не напряжением. Светодиоды – тоже диоды, и их тоже нужно питать стабильным током. При стационарной установке светодиода проблема его питания легко решается с помощью резистора, который задает ток через светодиод. Рассчитать номинал резистора помогает закон Ома: R=(Uпит-Uпад)/I , где Uпит – напряжение источника питания в вольтах, Uпад – напряжение, которое падает на светодиоде (примерно 3-3,5В, зависит от тока через светодиод), а I – желаемый ток через светодиод в амперах. Далее подбирается резистор ближайшего номинала, который есть в наличии и все хорошо работает. При больших токах резистор будет сильно греться, так что стоит его брать по мощнее.

Минусом стабилизатора на резисторе является неспособность реагировать на изменение напряжения питания (ток через светодиод и как следствие его яркость будут падать по мере разряда батареи), а также никому не нужная рассеиваемая мощность на резисторе. Для решения этой проблемы существуют так называемые драйвера светодиода (стабилизаторы тока). Стабилизаторы тока бывают повышающими (Boost) и понижающими (Buck). Boost стабилизаторы используются, когда напряжение на батареях меньше, чем падение напряжения на светодиоде, а Buck – когда напряжение на батарея больше падения на светодиоде.
При проектировании своего «неубиваемого» фонарика я задумал использовать параллельную связку из литиевых аккумуляторов или 3шт. АА батарейки (т.е. питающее входное напряжение драйвера должно быть в пределах 3-4,5В). Для этой задачи необходимо использовать Buck драйвер, но при этом не используется около 20% запасенной энергии в батареях! Эти 20% можно выжать, вставив в схему еще и Boost драйвер, который будет включаться, когда для Buck драйвера будет слишком низкое напряжения питания. Все это очень муторно и громоздко, 2 драйвера + компаратор или микроконтроллер для переключения. Так дело далеко не зайдет. Почитав раздел светотехники на speleo.ru открыл для себя Boost/Buck стабилизатор с нужным мне диапазоном питающих напряжений и недурной эффективностью (достижимой при вдумчивой намотке индуктивности). Эта микросхема следит за питающим напряжение и автоматически переключает встроенные Boost/Buck драйвера. Силовые ключи в мостовой схеме интегрированы в саму микросхему, и позволяют коммутировать токи до 1А. Схема включения была взята из и немного модифицирована:


Конденсаторы С3,С4 – танталовые в СМД исполнении 68мкФ, С1 ,С2 ,С5 – керамические по 0,1мкФ. С намоткой индуктивности я связываться не стал, поэтому купил взял SUMIDA CDRH5D28RNP-5RØN на 5мкГн. Как видно, микросхема драйвера имеет 2 «канала», которые можно включать по отдельности или вместе с помощью высокого логического уровня на выводах EN1 , EN2 . Токи «каналов» задается с помощью 2-х резисторов R1 , R2 которые рассчитывается по формуле R1=3580*0.8/I1 , R2=3580*0.8/I2 . Главное, чтобы суммарный ток «каналов» был меньше 1А, иначе есть хорошая вероятность спалить внутренние ключи. Далее по задумке, в фонарике будет 2 режима, «ходовой» и «мощный» с соответствующими токами через диод 0,2А и 1А (мощный режим достигается путем включения 2-х «каналов» по 0,2А и 0,8А одновременно). То есть резистор R1 , задающий «ходовой» режим должен быть номиналом 15кОм, а R2 – 3,9кОм. Переключатся режимы будут с помощью тактовой кнопки, герметизированной кусочком резины и прижимной пластиной. То есть для этого нужно повесить еще микроконтроллер, который будет считывать нажатия кнопки и переключать режимы свечения диода. Включение/выключение фонаря будет производиться с помощью длительного (2с) удержания кнопки. А переключение «ходового» и «мощного» режима будет с помощью короткого нажатия кнопки (0,5с). Полная схема устройства с микроконтроллером:


Микроконтроллер взял тот, который был ближе всего под рукой. Им оказался в SO-14 исполнении. Прошивка его тривиальна, кроме обработки нажатия клавиши, где учитывается время удержания. Когда фонарик выключен – микроконтроллер переходит в Power-Down режим, и потребляет всего 0,1мкА (LTC3454 в SHUTDOWN режиме потребляет тоже всего ничего – 1мкА) и ощутимо подсаживать аккумулятор не будет. Также добавил еще один элемент, конденсатор С6 – 0,1мкФ на питании микроконтроллера.

    #include

    #include

  1. #define EN1 2

    #define EN2 3

  2. #define KEY 2

  3. unsigned char mode= 0 ;

    unsigned char sleep_flag= 1 ;

  4. void pause (unsigned int a)

    { unsigned int i;

  5. for (i= a; i> 0 ; i-- )

  6. void set_mode(void )

    if (mode== 0 ) PORTA&= ~((1 << EN1) | (1 << EN2) ) ;

    if (mode== 1 ) PORTA= (1 << EN1) ;

    if (mode== 2 ) PORTA= (1 << EN1) | (1 << EN2) ;

  7. ISR (INT0_vect)

    { int count;

  8. count= 0 ;

    count= count+ 1 ;

  9. if (count== 1000 ) {

  10. if (mode== 1 ) mode= 2 ;

    else if (mode== 2 ) mode= 1 ;

  11. while ((PINB& _BV(KEY) ) == 0x00 )

    count= count+ 1 ;

    if (count== 9000 ) {

    if (mode== 0 ) mode= 1 ;

    else {

    mode= 0 ;

    sleep_flag= 1 ;

    set_mode() ;

  12. while ((PINB& _BV(KEY) ) == 0x00 )

    set_mode() ;

  13. return ;

  14. int main(void )

    DDRB= 0x04 ; //PB2 как вход

    PORTB= 0x04 ;

  15. DDRA= 0x0c ; //PA2,PA3 как выхода

  16. pause(1000 ) ; //Пауза

  17. GIMSK= (1 << INT0) ;

    MCUCR= (0 << ISC00) | (0 << ISC01) ; //Прерывание по низкому уровню на PB2

    MCUCR|= (1 << SM1) | (0 << SM0) | (1 << SE) ; //Разрешить power-down режим

    sei() ; //Разрешить прерывания

» рассматривалось, в том числе, изменение светодиодной матрицы в приобретенном фонарике. Целью доработки было повышение надежности источника света, за счет изменения схемы подключения светодиодов, с параллельного включения на комбинированное.

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% сократит срок их службы в несколько раз.

Основной характеристикой светодиодов, которая определяют яркость их свечения, является не напряжение, а ток. Чтобы светодиоды гарантированно отработали заявленное количество часов, необходим драйвер, который стабилизирует протекающий через цепь светодиодов ток и длительно сохранит устойчивую яркость света.

Для маломощных светоизлучающих диодов, возможно их использование и без драйвера, но в этом случае его роль выполняют ограничительные резисторы. Такое подключение было использовано в приведенной выше самоделке. Это простое решение защищает светодиоды от превышения допустимого тока, в пределах расчетного источника питания, но стабилизация при этом отсутствует.

В этой статье, рассмотрим возможность усовершенствовать приведенную выше конструкцию и повысить эксплуатационные свойства фонаря с питанием от внешнего аккумулятора.

Для стабилизации тока через светодиоды, добавим в конструкцию фонаря простой линейный драйвер - стабилизатор тока с обратной связью. Здесь ток является ведущим параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах. Драйвер обеспечивает стабилизацию выходного тока при нестабильном входном напряжении или колебаниях напряжения в системе, причем подстройка тока происходит плавно, не создавая высокочастотных помех свойственных импульсным стабилизаторам. Схема такого драйвера крайне проста в изготовлении и настройке, но меньший КПД (около 80%) является за это платой.

Для исключения критического разряда источника питания (ниже 12 В), что особенно опасно для литиевых аккумуляторов, в схему дополнительно введем индикацию предельного разряда или отключение аккумулятора при низком напряжении.

Изготовление драйвера

1. Для решения указанных предложений изготовим следующую схему питания светодиодной матрицы.

Ток питания светодиодной матрицы проходит через регулирующий транзистор VT2 и ограничительное сопротивление R5. Ток через управляющий транзистор VT1 задается подбором сопротивления R4 и может изменяться в зависимости от изменения падения напряжения на резисторе R5, также используемом в качестве резистора токовой обратной связи. При увеличении тока в цепочке - светодиоды, VT2, R5, по какой-либо причине, увеличивается падение напряжения на R5. Соответствующее увеличение напряжения на базе транзистора VT1, приоткрывает его, уменьшая этим напряжение на базе VT2. А это прикрывает транзистор VT2, уменьшая и стабилизируя этим, ток через светодиоды. При уменьшении тока на светодиодах и VT2, процессы протекают в обратном порядке. Таким образом, за счет обратной связи, при изменении напряжения на источнике питания (с 17 до 12 вольт) или возможных изменениях параметров схемы (температура, выход из строя светодиода), ток через светодиоды постоянен в течение всего периода разряда аккумулятора.

На детекторе напряжения, специализированной микросхеме DA1, собрано устройство для контроля напряжения. Микросхема работает следующим образом. При номинальном напряжении, микросхема DA1 закрыта и находится в дежурном состоянии ожидания. При уменьшении напряжения на выводе 1, подключенном к контролируемой цепи (в данном случае - источник питания), до определенного значения, вывод 3 (внутри микросхемы) соединяется с выводом 2, подключенным к общему проводу.

Приведенная выше схема имеет различные варианты включения.

Вариант 1. Если к выводу 3 (точка А) подключить индикаторный светодиод (LED1 – R3) соединенный с положительным проводом (см. принципиальную схему), получим индикацию предельного разряда аккумулятора. При снижении напряжения питания до определенного значения (в нашем случае 12 В) светодиод LED1 включится, сигнализируя о необходимости заряда аккумулятора.

Вариант 2. Если точку А соединить с точкой Б, то при достижении низкого напряжения (12 В) на аккумуляторе, получим автоматическое отключение светодиодной матрицы от питания. Детектор напряжения, микросхема DA1, при достижении контрольного напряжения, соединит базу транзистора VT2 с общим проводом и закроет транзистор, отключив светодиодную матрицу. При повторном включении фонаря на низком напряжении (менее 12 В), светодиоды матрицы загораются на пару секунд (за счет заряд/разряд С1) и вновь гаснут, сигнализируя о разряде аккумулятора.

Вариант 3. При объединении вариантов 2 и 3, при отключении светодиодной матрицы включится индикаторный светодиод LED1.
Основные достоинства схем на детекторе напряжения, простота схемного подключения (практически не требуется дополнительных деталей обвязки) и чрезвычайно низкое энергопотребление (доли микроампера) в дежурном состоянии (в режиме ожидания).

2. Собираем схему драйвера на монтажной плате.
Выполняем монтаж VT1, VT2, R4. Подключаем, в качестве нагрузки, светодиодную матрицу, рассмотренную в начале статьи. В цепь питания светодиодов включаем миллиамперметр. С целью возможности проверки и настройки схемы на стабильном и определенной величины напряжении, подключаем ее к регулируемому источнику питания. Подбираем сопротивление резистора R5, позволяющее стабилизировать ток через светодиоды во всем диапазоне планируемой регулировки (с 12 до 17 В). С целью повышения КПД, первоначально был установлен резистор R5 номиналом 3,9 ома (см. фото), но стабилизация тока во всем диапазоне (при фактически установленных деталях) потребовала установки номинала в 20 ом, так как не хватало напряжения для регулировки VT1 из-за малого тока потребления светодиодной матрицы.

Транзистор VT1 желательно подобрать с большим коэффициентом передачи тока базы. Транзистор VT2 должен обеспечить допустимый ток коллектора, превышающий ток светодиодной матрицы и рабочее напряжение.

3. Добавляем на монтажную плату схему индикатора - ограничителя предельного разряда. Микросхемы детектора напряжения выпускаются на различные значения контроля напряжения. В нашем случае, в связи с отсутствием микросхемы на 12 В, использовал имеющуюся в наличии, на 4,5 В (часто встречаются в отработавшей бытовой технике – телевизоры, видеомагнитофоны). По этой причине, для контроля напряжения в 12 В, добавляем в схему делитель напряжения на постоянном резисторе R1 и переменном R2, необходимом для точной настройки на нужное значение. В нашем случае, регулировкой R2, добиваемся напряжения 4,5 В на выводе 1 DA1 при напряжении 12,1…12,3 В на шине питания. Аналогично, при подборе делителя напряжения, можно использовать и другие подобные микросхемы - детекторы напряжения, различных фирм, наименований и контрольных напряжений.

Первоначально проверяем и настраиваем схему на срабатывание, по светодиодному индикатору. Затем проверяем работу схемы, соединив точки А и Б, на отключение светодиодной матрицы. Останавливаемся на выбранном варианте (1, 2, 3).

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.


Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

Название Cree XM-L T6 Cree XM-L2 Cree XP-G2 Cree XR-E
Фото
U, В 2,9 2,85 2,8 3,3
I, мА 700 700 350 350
P, Вт 2 2 1 1
Рабочая температура, °C
Световой поток, Лм 280 320 145 100
Угол свечения, ° 125 125 115 90
Индекс цветопередачи, Ra 80-90 70-90 80-90 70-90

Главная характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Название
Фото
U, В 5,7; 8,55; 34,2; 6; 12; 3,6 3,5
I, мА 1100; 735; 185; 2500; 1250 5000 9000...13500
P, Вт 6,3 8,5 18 20...40
Рабочая температура, °C
Световой поток, Лм 440 510 1250 2000...2500
Угол свечения, ° 115 120 100 90
Индекс цветопередачи, Ra 70-90 80-90 80-90

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали .

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police


LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.


Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).


Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.


Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.


Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Долго пылился на полке старый фонарик - ручка «Duracell». Работал он от двух батареек формата ААА, на лампочку накаливания. Очень удобен был, когда нужно посветить в какую-либо узкую щель в корпусе электронного прибора, но всё удобство от применения перечеркивал «жор» батареек. Можно было бы выкинуть этот раритет и поискать в магазинах что-то современнее, но… Это не наш метод... © Потому на Али была куплена микросхема светодиодного драйвера, которая помогла перевести фонарик на светодиодный свет. Переделка очень простая, которую сможет осилить, даже начинающий радиолюбитель, умеющий держать в руках паяльник… Так что, кому интересно, велком под Кат…

Микросхема драйвер покупалась давно, больше года назад, и ссылка на магазин уже ведет в «пустоту», потому я нашел аналогичный товар, у другого продавца. Сейчас этот драйвер стоит дешевле, чем я покупал его. Что же это за «клоп» с тремя ножками, давайте рассмотрим подробнее.
Для начала ссылка на даташит: www.diodes.com/assets/Datasheets/ZXLD381.pdf
Микросхема представляет собой Led драйвер способный работать от низкого напряжения, к примеру, одной батарейки 1.5В формата ААА. Микросхема драйвера имеет высокую эффективность (КПД) 85% и способна «высосать» батарейку практически полностью, до остаточного напряжения 0,8В.
Характеристики микросхемы драйвера

под спойлером


Схема драйвера очень проста…


Как вы видите, кроме этой микросхемы «клопа» нужна всего одна деталь - дроссель (индуктор), и именно индуктивностью дросселя задается ток светодиода.
Для фонарика в место лампочки, я подобрал яркий белый светодиод, потребляющий ток 30мА, соответственно мне нужно было намотать дроссель индуктивностью 10мкГн. Эффективность драйвера составляет 75-92% в диапазоне 0.8-1.5В, что очень неплохо.

Приводить здесь чертеж печатной платы не буду, т.к нет смысла, плату можно изготовить за пару минут, просто процарапав фольгу в нужных местах.


Дроссель можно намотать, или взять готовый. Я намотал на гантельке, которая попалась под руку. При самостоятельном изготовлении необходимо контролировать индуктивность при помощи LC метра. В качестве корпуса для платы драйвера был использовать двух кубовый одноразовый шприц, внутри которого вполне достаточно места, что бы разместить все необходимые компоненты. С одной стороны шприца -резиновая пробка с светодиодом и контактной площадкой, с другой стороны вторая контактная площадка. Размер отрезка шприца подбирается по месту и приблизительно равен размеру батарейки ААА (мизиньчиковой, как её называют в народе)


Собственно собираем фонарик


И видим, что светодиод ярко светит от одной батарейки…


Ручка-фонарик в сборе выглядит вот так


Светит хорошо и вес фонарика стал меньше, потому как используется всего одна батарейка, а не две, как было изначально…

Вот такой получился коротенький обзор… При помощи микросхемы драйвера, вы можете переделать почти любой раритетный фонарик, на питание от одной батарейки 1.5В. Если есть вопросы спрашивайте…

Планирую купить +73 Добавить в избранное Обзор понравился +99 +185
error: