Как влияют метеорологические условия на теплообмен человека. Влияние параметров метеорологических условий среды на организм человека

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
" ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ"
Кафедра безопасности жизнедеятельности
РЕФЕРАТ
на тему: "Влияние производственных метеорологических условий на состояние организме"
ОМСК 2011
Введение
Введение

Исследования, показали, что 80% собственной жизни человек проводит в помещении. Из этих восьмидесяти процентов 40% он проводит на рабочем месте. И от того, в каких условиях любому из нас приходится работать, зависит многое. В воздухе офисных зданий и производственных помещений содержатся многочисленные бактерии, вирусы, частицы пыли, вредные органические соединения, такие как молекулы угарного газа и многие другие вещества, неблагоприятно сказывающиеся на здоровье работников. По статистике, 30% офисных служащих страдают повышенной раздражимостью сетчатки глаза, 25% испытывают систематические головные боли, а у 20% - трудности с дыхательными путями.

Актуальность темы в том, что исключительно важную роль на состояние и самочувствие человека, на его работоспособность оказывает микроклимат, а требования к отоплению, вентиляции и кондинционированию непосредственно влияет на здоровье и производительность человека.
1. Влияние метеорологических условий на организм
Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, влажности воздуха и его подвижности. Параметры микроклимата производственных помещений зависят от теплофизических особенностей технологического процесса, климата, сезона года.

Производственный микроклимат, как правило, отличается большой изменчивостью, неравномерностью по горизонтали и вертикали, разнообразием сочетаний температуры и влажности движения воздуха и интенсивности излучения. Многообразие это определяется особенностями технологии производства, климатическими особенностями местности, конфигурацией зданий, организацией воздухообмена с внешней атмосферой, условий отопления и вентиляции.

По характеру воздействия микроклимата на работающих производственные помещения могут быть: с преобладающим охлаждающим действием и с относительно нейтральным (не вызывающим значительных изменений терморегуляции) действием микроклимата.

Метеорологические условия для рабочей зоны производственных помещений регламентируются ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны" и Санитарными нормами микроклимата производственных помещений (СН 4088-86). В рабочей зоне должны обеспечиваться параметры микроклимата, соответствующие оптимальным и допустимым значениям.

ГОСТ 12.1.005 установлены оптимальные и допустимые микроклиматические условия. При длительном и систематическом пребывании человека в оптимальных микроклиматических условиях сохраняется нормальное функциональное и тепловое состояние организма без напряжения механизмов терморегуляции. При этом ощущается тепловой комфорт (состояние удовлетворения внешней средой), обеспечивается высокий уровень работоспособности. Такие условия предпочтительны на рабочих местах.

Для создания благоприятных условий работы, соответствующих физиологическим потребностям человеческого организма, санитарные нормы устанавливают оптимальные и допустимые метеорологические условия в рабочей зоне помещения.
Нормирование микроклимата в рабочих помещениях осуществляется в соответствии с санитарными правилами и нормами, изложенными в СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений".
Человек может переносить колебания температур воздуха в весьма широких пределах от - 40 - 50 o и ниже до +100 o и выше. Организм человека приспосабливается к столь широкому диапазону колебаний температур окружающей среды посредством регулирования теплопродукции и теплоотдачи человеческого организма. Этот процесс называется терморегуляцией.

В результате нормальной жизнедеятельности организма в нем постоянно происходит образование тепла и его отдача, то есть теплообмен. Тепло образуется вследствие окислительных процессов, из которых две трети падает на окислительные процессы в мышцах. Отдача тепла идет тремя путями: конвекцией, радиацией и испарением пота. В нормальных метеорологических условиях окружающей среды (температура воздуха около 20 o С) конвекцией отдается около 30 %, радиацией - около 45 % и испарением пота - около 25 % тепла.

При низких температурах окружающей среды в организме усиливаются окислительные процессы, увеличивается внутренняя теплопродукция, за счет чего и сохраняется постоянная температура тела. На холоде люди стараются больше двигаться или работать, так как работа мышц ведет к усилению окислительных процессов и увеличению теплопродукции. Дрожь, появляющаяся при длительном нахождении человека на холоде, есть не что иное, как мелкие подергивания мышц, что также сопровождается усилением окислительных процессов и, следовательно, повышением теплопродукции.

Несмотря на то, что организм человека благодаря терморегуляции может приспосабливаться к весьма широкому диапазону колебаний температур, нормальное физиологическое состояние его сохраняется лишь до определенного уровня. Верхняя граница нормальной терморегуляции в полном покое лежит в пределах 38 - 40 o С при относительной влажности воздуха около 30 %. При физической нагрузке или повышенной влажности воздуха этот предел снижается.

Терморегуляция в неблагоприятных метеорологических условиях, как правило, сопровождается напряжением определенных органов и систем, что выражается в изменении их физиологических функций. В частности, при действии высоких температур отмечается повышение температуры тела, что свидетельствует о некотором нарушении терморегуляции. Степень повышения температуры, как правило, зависит от температуры окружающего воздуха и от продолжительности его воздействия на организм. Во время физической работы в условиях высоких температур температура тела увеличивается больше, чем при аналогичных условиях в покое.

1.1 Воздействие температуры воздуха на состояние организма
Температура в производственных помещениях является одним из ведущих факторов, определяющих метеорологические условия производственной среды.

Действие высоких температур почти всегда сопровождается повышенным потоотделением. В неблагоприятных метеорологических условиях рефлекторное потоотделение часто достигает таких размеров, что пот не успевает испаряться с поверхности кожи. В этих случаях дальнейшее увеличение потоотделения ведет не к увеличению охлаждения организма, а к сокращению его, так как водяной слой препятствует снятию тепла непосредственно с кожного покрова. Такое профузное потоотделение называют неэффективным.

Высокая температура окружающего воздуха оказывает большое влияние на сердечно - сосудистую систему. Повышение температуры воздуха выше определенных пределов дает учащение пульса. Установлено, что учащение пульса начинается одновременно с повышением температуры тела, то есть с нарушением терморегуляции. Эта зависимость дает возможность по учащению пульса судить о состоянии терморегуляции при условии отсутствия прочих факторов, оказывающих влияние на частоту сердечных сокращений (физическое напряжение и пр.).

Воздействие на организм высокой температуры вызывает понижение кровяного давления. Это результат перераспределения крови в организме, где происходит отток крови от внутренних органов и глубоких тканей и переполнение периферических, то есть кожных, сосудов.

Под влиянием высокой температуры изменяется химический состав крови, увеличивается удельный вес, остаточный азот, уменьшается содержание хлоридов и углекислоты и т. д. Особое значение в изменении химического состава крови имеют хлориды. При чрезмерном потении в условиях высоких температур хлориды выводятся из организма вместе с потом, вследствие чего нарушается водно-солевой обмен. Значительные нарушения водно-солевого обмена могут привести к так называемой судорожной болезни.

Высокая температура воздуха неблагоприятно действует на функции органов пищеварения и на витаминный обмен.

Длительное и сильное воздействие низких температур может вызвать неблагоприятные изменения в организме человека. Местное и общее охлаждение организма причина многих заболеваний, в том числе и простудных. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к снижению работоспособности.

При воздействии на организм человека отрицательных температур наблюдается сужение сосудов пальцев рук и ног, кожи лица, изменяется обмен веществ. Низкие температуры воздействуют также и на внутренние органы, и длительное воздействие этих температур приводит к их устойчивым заболеваниям.
1.2 Воздействие влажности воздуха на состояние организма
Влажность воздуха, существенно влияя на теплообмен организма с окружающей средой, имеет большое значение для жизнедеятельности человека.

Люди весьма восприимчивы к влажности. От нее зависит интенсивность испарения влаги с поверхности кожи. При высокой влажности, особенно в жаркий день, испарение влаги с поверхности кожи уменьшается и поэтому затрудняется терморегуляция человеческого организма. В сухом воздухе, напротив, происходит быстрое испарение влаги с поверхности кожи, что приводит к высыханию слизистых оболочек дыхательных путей.

В воздухе с большой относительной влажностью испарение замедляется и охлаждение незначительно. Жара труднее переносится при высокой влажности воздуха. В этих условиях затруднен отвод тепла за счет испарения влаги. Поэтому возможен перегрев тела, нарушающий жизнедеятельность организма. Для оптимального теплообмена человеческого организма при температуре 20-25С наиболее благоприятна относительная влажность порядка 50%.

Для хорошего самочувствия и здоровья необходимо, чтобы относительная влажность была в пределах от 40 до 60%. Оптимальная влажность составляет 45%. С началом отопительного сезона влажность воздуха в помещениях значительно снижается. Такие условия вызывают быстрое испарение и высыхание слизистой оболочки носа, гортани, легких, что приводит к простудным и другим заболеваниям.

Высокая влажность также при любой температуре плохо влияет на здоровье человека. Она может возникнуть из-за больших комнатных растений или нерегулярного проветривания.
Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и эрозии, загрязнению болезнетворными микробами. Вода и соли, выделяемые из организма потом, должны замещаться, поскольку их потеря приводит к сгущению крови и нарушению деятельности сердечно-сосудистой системы.
1.3 Воздействие подвижности воздуха на состояние организма
Человек начинает ощущать движение воздуха при его скорости примерно 0,1 м/с. Легкое движение воздуха при обычных температурах воздуха способствует хорошему самочувствию. Большая скорость движения воздуха, особенно в условиях низких температур, вызывает увеличение теплопотерь и ведет к сильному охлаждению организма.
Скорость движения воздуха в пределах 0,25-3 м/с способствует увеличению отдачи тепла с поверхности тела вследствие конвекции, однако при низких температурах окружающего воздуха увеличение скорости движения воздуха может привести к переохлаждению организма.
микроклимат метеорологический производственный рабочий
2. Пути обеспечения нормального микроклимата производственных помещений

Метеорологические условия в рабочих помещениях нормируются по трем основным показателям: температуре, относительной влажности и подвижности воздуха. Эти показатели различны для теплого и холодного периодов года, для различных по тяжести видов работ, выполняемых в этих помещениях (легкие, средней тяжести и тяжелые). Кроме того, нормируются верхние и нижние допустимые пределы этих показателей, которые должны соблюдаться в любом рабочем помещении, а также оптимальные показатели, обеспечивающие наилучшие условия работы.

Человек ощущает воздействие параметров микроклимата комплексно. На этом основано использование для характеристики микроклимата так называемых эффективной и эффективно-эквивалентной температур. Эффективная температура характеризует ощущения человека при одновременном воздействии температуры и движения воздуха. Эффективно-эквивалентная температура учитывает еще и влажность воздуха.

В основу принципа нормирования метеорологических условий производственной среды положена дифференцированная оценка оптимальных и допустимых метеорологических условий в рабочей зоне в зависимости от тепловой характеристики производственного помещения, категории работ по тяжести и времени года.

С учетом этих факторов определено, что для физически легкой работы, выполняемой в помещениях с незначительным избытком тепла в холодное и переходное время года, оптимальные параметры микроклимата должны быть следующими: температура воздуха -- 20-23°С, относительная влажность воздуха 40-60%, скорость движения воздуха не более 0,2 м/сек. Допустимые параметры микроклимата для тех же условий определены в следующем размере: температура воздуха -- 19-25°С, относительная влажность воздуха не более 75%, скорость движения воздуха не более 0,3 м/сек. На тяжелых работах температура воздуха по оптимальным нормам должна быть ниже на 4-5°С, а по допустимым -- на 6°С ниже. В теплый период года температура воздуха предусматривается нормами несколько выше -- на 2-3°С.

Благоприятный микроклимат обеспечивается:
- рациональными объемно-планировочными и конструктивными решениями производственных зданий;
- рациональным размещением цехов, рабочих мест и оборудования;
- герметизацией оборудования; теплоизоляцией нагреваемых поверхностей;
- механизацией и автоматизацией процессов, связанных с избыточным выделением тепла и влаги;
- обеспечением дистанционного управления и наблюдения;
- внедрением более рациональных технологических процессов и оборудования.
Необходима рациональная вентиляция, а в холодное время года -- отопление производственных помещений. Наиболее эффективное средство обеспечения комфортного микроклимата -- кондиционирование воздуха.

Важное направление предупреждения отрицательных последствий неблагоприятного воздействия параметров метеорологических условий на организм человека -- рационализация режимов труда и отдыха, достигаемая сокращением продолжительности рабочей смены, введением дополнительных перерывов, созданием условий для эффективного отдыха в помещениях с нормальными метеорологическими условиями.

Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать задержку тепла - предупреждение выхолаживания производственных помещений, подбор рациональных режимов труда и отдыха, использование средств индивидуальной защиты, а также мероприятия по повышению защитных сил организма.
Профилактике нарушения водного баланса работников в условиях нагревающего микроклимата способствует обеспечение полного возмещения жидкости, различных солей, микроэлементов (магний, медь, цинк, йод и др.), растворимых в воде витаминов, выделяемых из организма с потом.
Для оптимального водообеспечения работающих целесообразно размещать устройства питьевого водоснабжения (установки газированной воды-сатураторы, питьевые фонтанчики, бачки и т.п.) максимально приближенными к рабочим местам, обеспечивая к ним свободный доступ.
Для восполнения дефицита жидкости целесообразно предусматривать выдачу работающим чая, минеральной щелочной воды, клюквенного морса, молочнокислых напитков (обезжиренное молоко, пахта, молочная сыворотка), отваров из сухофруктов при соблюдении санитарных норм и правил их изготовления, хранения и реализации.
Для повышения эффективности возмещения дефицита витаминов, солей, микроэлементов, применяемые напитки следует менять. Не следует ограничивать работников в общем количестве потребляемой жидкости, но объем однократного приема регламентируется (один стакан). Наиболее оптимальной является температура жидкости, равная 12 - 15 °С.
Список использованной литературы
1. ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны"
2. СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений"
Размещено на Allbest.ru

Подобные документы

    Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.

    контрольная работа , добавлен 23.06.2013

    Нормирование метеорологических условий в производственных помещениях. Контроль микроклимата на рабочих местах. Мероприятия по нормализации состояния воздушной среды и защите организма работающих от действия неблагоприятных факторов производства.

    курсовая работа , добавлен 07.01.2011

    Описание микроклимата производственных помещений, нормирование его параметров. Приборы и принципы измерения температуры, относительной влажности и скорости движения воздуха, интенсивности теплового излучения. Установление оптимальных условий микроклимата.

    презентация , добавлен 13.09.2015

    Микроклимат производственных помещений. Температура, влажность, давление, скорость движения воздуха, тепловое излучение. Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

    реферат , добавлен 17.03.2009

    Климат рабочей зоны. Теплоотдача организмом тепла во внешнюю среду. Зависимость количества вырабатываемого организмом тепла от характера и условий деятельности. Метод обобщенного факторного коэффициента микроклимата и учета самочувствия человека.

    лабораторная работа , добавлен 10.11.2013

    Основные понятия и определения. Температурные и волновые характеристики источников излучения. Действие микроклимата на человека. Нормирование метеорологических условий. Защита от не нормальных метеорологических условий.

    реферат , добавлен 06.04.2007

    Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Средства обеспечения надлежащей чистоты и допустимых параметров микроклимата рабочей зоны. Требования к освещению помещений и рабочих мест.

    презентация , добавлен 24.06.2015

    Понятие климатических условий (микроклимата) в рабочей зоне, приборы для их измерения. Параметры микроклимата рабочей зоны по нормативу оптимальных условий для холодного периода. Условия, оптимальные для работ средней тяжести. Оптимизация рабочей зоны.

    лабораторная работа , добавлен 16.05.2013

    Исследование температуры, влажности и скорости движения воздуха в производственных помещениях ООО Абакан-КАМИ. Сопоставление фактических значений параметров микроклимата на предприятии с нормативными. Анализ их влияния на работоспособность персонала.

    курсовая работа , добавлен 13.07.2011

    Микроклимат производственных помещений. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Защита временем при работе в условиях нагревающего микроклимата. Профилактика перегревания организма. Системы и виды производственного освещения.

Трудовая деятельность человека всегда протекает в определенных метеорологических условиях, которые определяются сочетанием температуры воздуха, скорости его движения и относительной влажности, барометрическим давлением и тепловым излучением от нагретых поверхностей. Если труд протекает в помещении, то эти показатели в совокупности (за исключением барометрического давления) принято называть микроклиматом производственного помещения.

По определению, приведенному в ГОСТ, микроклимат производственных помещений - это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.

Если работа выполняется на открытых площадках, то метеорологические условия определяются климатическим поясом и сезоном года. Однако и в этом случае в рабочей зоне создается определенный микроклимат.

Все жизненные процессы в организме человека сопровождаются образованием теплоты, количество которой меняется от 4....6 кДж/мин (в состоянии покоя) до 33...42 кДж/мин (при очень тяжелой работе).

Параметры микроклимата могут изменяться в очень широких пределах, в то время как необходимым условием жизнедеятельности человека является сохранение постоянства температуры тела.

При благоприятных сочетаниях параметров микроклимата человек испытывает состояние теплового комфорта, что является важным условием высокой производительности труда и предупреждения заболеваний.

При отклонении метеорологических параметров от оптимальных в организме человека для поддержания постоянства температуры тела начинают происходить различные процессы, направленные на регулирование теплопродукции и теплоотдачи. Эта способность организма человека сохранять постоянство температуры тела, несмотря на значительные изменения метеорологических условий внешней среды и собственной теплопродукции, получила название терморегуляции.

При температуре воздуха в пределах от 15 до 25°С теплопродукция организма находится на приблизительно постоянном уровне (зона безразличия). По мере понижения температуры воздуха теплопродукция повышается в первую очередь за

счет мышечной активности (проявлением которой является, например, дрожь) и усиления обмена веществ. По мере повышения температуры воздуха усиливаются процессы теплоотдачи. Отдача теплоты организмом человека во внешнюю среду происходит тремя основными способами (путями): конвекцией, излучением и испарением. Преобладание того или иного процесса теплоотдачи зависит от температуры окружающего воздуха и ряда других условий. При температуре около 20°С, когда человек не испытывает никаких неприятных ощущений, связанных с микроклиматом, теплоотдача конвекцией составляет 25...30%, излучением - 45%, испарением - 20...25%. При изменении температуры, влажности, скорости движения воздуха, характера выполняемой работы эти соотношения существенно меняются. При температуре воздуха 30°С отдача теплоты испарением становится равной суммарной отдаче теплоты излучением и конвекции. При температуре воздуха более 36°С отдача теплоты происходит уже полностью за счет испарения.

При испарении 1 г воды организм теряет около 2,5 кДж теплоты. Испарение происходит, главным образом, с поверхности кожи и в значительно меньшей степени через дыхательные пути (10...20%). При нормальных условиях с потом организм теряет в сутки около 0,6 л жидкости. При тяжелой физической работе при температуре воздуха более 30 °С количество теряемой организмом жидкости может достичь 10...12 л. При интенсивном потоотделении, если пот не успевает испариться, наблюдается выделение его в виде капель. При этом влага на коже не только не способствует отдаче теплоты, а, наоборот, препятствует этому. Такое потоотделение ведет только к потере воды и солей, но не выполняет основную функцию - усиление отдачи теплоты.

Значительное отклонение микроклимата рабочей зоны от оптимального может быть причиной ряда физиологических нарушений в организме работающих, привести к резкому снижению работоспособности даже к профессиональным заболеваниям.

Перегрев.При температуре воздуха более 30°С и значительном тепловом излучении от нагретых поверхностей наступает нарушение терморегуляции организма, что может привести к перегреву организма, особенно, если потеря пота в смену приближается к 5 л. Наблюдается нарастающая слабость, головная боль, шум в ушах, искажение цветного восприятия (окраска всего в красный или зеленый цвет), тошнота, рвота, повышается температура тела. Дыхание и пульс учащаются, артериальное давление вначале возрастает, затем падает. В тяжелых случаях наступает тепловой, а при работе на открытом воздухе - солнечный удар. Возможна судорожная болезнь, являющаяся следствием нарушения водно-солевого баланса и характеризующаяся слабостью, головной болью, резкими судорогами, преимущественно в конечностях. В настоящее время в производственных условиях такие тяжелые формы перегревов практически не встречаются. При длительном воздействии теплового излучения может развиться профессиональная катаракта.

Но даже если не возникают такие болезненные состояния, перегрев организма сильно сказывается на состоянии нервной системы и работоспособности человека. Исследованиями, например, установлено, что к концу 5-часового пребывания в зоне с температурой воздуха около 31°С и влажностью 80...90%; работоспособность снижается на 62%. Значительно снижается мышечная сила рук (на 30...50%), уменьшается выносливость к статическому усилию, примерно в 2 раза ухудшается способность к тонкой координации движений. Производительность труда снижается пропорционально ухудшению метеорологических условий.

Охлаждение. Длительное и сильное воздействие низких температур может вызвать различные неблагоприятные изменения в организме человека. Местное и общее охлаждение организма является причиной многих заболеваний: миозитов, невритов, радикулитов и др., а также простудных заболеваний. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к уменьшению работоспособности. В особо тяжелых случаях воздействие низких температур может привести к обморожениям и даже смерти.

Влажность воздуха определяется содержанием в нем водяных паров. Различают абсолютную, максимальную и относительную влажность воздуха. Абсолютная влажность (А) - это масса водяных паров, содержащихся в данный момент в определенном объеме воздуха, максимальная (М) - максимально возможное содержание водяных паров в воздухе при данной температуре (состояние насыщения). Относительная влажность (В) определяется отношением абсолютной влажности А к максимальной М и выражается в процентах:

Физиологически оптимальной является относительная влажность в пределах 40…60%.Повышенная влажность воздуха (более 75…85%) в сочетании с низкими температурами оказывает значительное охлаждающее действие, а в сочетании с высокими - способствует перегреванию организма. Относительная влажность менее 25% также неблагоприятна для человека, так как приводит к высыханию слизистых оболочек и снижению защитной деятельности мерцательного эпителия верхних дыхательных путей.

Подвижность воздуха. Человек начинает ощущать движение воздуха при его скорости примерно 0,1 м/с. Легкое движение воздуха при обычных температурах способствует хорошему самочувствию, сдувая обволакивающий человека насыщенный водяными парами и перегретый слой воздуха. В то же время большая скорость движения воздуха, особенно в условиях низких температур, вызывает увеличение теплопотерь конвекцией и испарением и ведет к сильному охлаждению организма. Особенно неблагоприятно действует сильное движение воздуха при работах на открытом воздухе в зимних условиях.

Человек ощущает воздействие параметров микроклимата комплексно. На этом основано введение так называемых эффективной и эффективно-эквивалентной температур. Эффективная температура характеризует ощущения человека при одновременном воздействии температуры и движения воздуха. Эффективно-эквивалентная температура учитывает еще влажность воздуха. Номограмма для нахождения эффективно-эквивалентной температуры и зоны комфорта была построена опытным путем (рис. 7).

Тепловое излучение свойственно любым телам, температура которых выше абсолютного нуля.

Тепловое воздействие облучения на организм человека зависит от длины волны и интенсивности потока излучения, величины облучаемого участка тела, длительности облучения, угла падения лучей, вида одежды человека. Наибольшей проникающей способностью обладают красные лучи видимого спектра и короткие инфракрасные лучи с длиной волны 0,78... 1,4 мкм, которые плохо задерживаются кожей и глубоко проникают в биологические ткани, вызывая повышение их температуры, например длительное облучение такими лучами глаз- ведет к помутнению хрусталика (профессиональной катаракте). Инфракрасное излучение вызывает также в организме человека различные биохимические и функциональные изменения.

В производственных условиях встречается тепловое излучение в диапазоне длин волн от 100 нм до 500 мкм. В горячих цехах это в основном инфракрасная радиация с длиной волны до 10 мкм. Интенсивность облучения рабочих горячих цехов меняется в широких пределах: от нескольких десятых долей до 5,0...7,0 кВт/м2. При интенсивности облучения более 5,0 кВт/м2

Рис. 7. Номограмма для определения эффективной температуры и зоны комфорта

в течение 2...5 мин человек ощущает очень сильное тепловое воздействие. Интенсивность же теплового облучения на расстоянии 1 м от источника теплоты на горновых площадках доменных печей и у мартеновских печей при открытых заслонках достигает 11,6 кВт/м2.

Допустимый для человека уровень интенсивности теплового облучения на рабочих местах составляет 0,35 кВт/м2 (ГОСТ 12.4.123 - 83 «ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования»).

В процессе деятельности человек находится под влиянием определенных метеорологических условий или микроклимата. К основным показателям микроклимата относятся температура, относительная влажность, скорость движения воздуха. Существенное влияние на параметры микроклимата и состояние человеческого организма оказывает интенсивность теплового излучения различных нагретых поверхностей.

Относительная влажность воздуха представляет собой отношение фактического количества паров воды в воздухе при данной температуре к количеству водяного пара, насыщающего воздух при этой температуре.

Если в помещении находятся различные источники тепла, температура которых превышает температуру человеческого тела, то тепло от них самопроизвольно переходит к менее нагретому телу, т.е. человеку. Различают три способа распространения тепла: теплопроводность, конвекцию, тепловое излучение.

Теплопроводность- перенос тепла вследствие беспорядочного теплового движения микрочастиц (атомов, молекул, электронов).

Конвекция – перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости.

Тепловое излучение – процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тела. В реальных условиях тепло передается комбинированным способом. Человек постоянно находится в состоянии теплового взаимодействия с окружающей средой. Для нормального протекания физиологических процессов в организме человека требуется поддержание практически постоянной температуры тела. Способность организма к поддержанию постоянной температуры называется терморегуляция (отвод выделяемого тепла в окружающее пространство).

Влияние температуры окружающего воздуха на человеческий организм в первую очередь с сужением и расширением кровеносных сосудов кожи. По действием низких температур сосуды сужаются, в результате чего замедляется поток крови к поверхности тела и снижается теплоотдача от поверхности тела за счет конвекции и излучения. При высоких температурах наблюдается обратная картина.

Повышенная влажность затрудняет теплообмен между организмом человека и внешней средой вследствие уменьшения испарения влаги с поверхности кожи, а низкая влажность приводит к пересыханию слизистых оболочек дыхательных путей. Движение воздуха улучшает теплообмен между телом и внешней средой.

Постоянное отклонение от нормальных параметров микроклимата приводит к перегреву или переохлаждению человеческого организма и связанным с ними негативным последствиям: обильному потоотделению, учащению пульса и дыхания, головокружению, появлению судорог, тепловому удару.

В нормативных документах введены понятия оптимальные и допустимые параметры микроклимата.

Радиация:первая помощь

Радиация – неотъемлемая часть окружающей среды. Она попадает в окружающую среду из природных источников, созданных человеком (атомные станции, испытания ядерного оружия). К природным источникам радиации относятся: космическое излучение, радиоактивные породы, радиоактивные химические вещества и элементы, обнаруженные в пище и воде. Ученые называют все виды природной радиации термином «радиационный фон».

Другие формы радиации поступают в природу в результате деятельности человека. Люди получают различные дозы радиации во время медицинского и стоматологического рентгена.

Радиоактивность и сопутствующие ей излучения существовали во Вселенной постоянно. Радиоактивные материалы входят в состав Земли, и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества. Самое неприятное свойство радиоактивного излучения – его воздействие на ткани живого организма, поэтому необходимы измерительные приборы, которые давали бы оперативную информацию.

Особенность ионизирующего излучения состоит в том, что его воздействие человек начнет ощущать лишь по прошествии некоторого времени. Различные виды излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Альфа-излучение задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей, водой или воздухом, тогда они становятся чрезвычайно опасными.

Бета-частица обладает большей проникающей способностью: она проходит в ткани организма на глубину 1-2 см и более, в зависимости от величины энергии. Проникающая способность гамма-излучения очень велика, распространяется со скоростью света: его может задержать лишь толстая свинцовая или бетонная плита.

Можно принимать меры по защите, но полностью освободиться от воздействия радиации практически невозможно. Уровень радиации на Земле разный.

Если источники ионизирующего излучения попали при дыхании, с питьевой водой или пищей, то такое излучение называется внутренним.

Из всех естественных источников радиации наибольшую опасность представляет радон – тяжелый газ без вкуса, запаха и, при этом, невидимый: со своими дочерними продуктами. Радон высвобождается из земной коры повсеместно, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения.

Самые распространенные стройматериалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья. Еще одним источником поступления радона в жилые помещения является вода и природный газ. Вода из глубоких колодцев или артезианских скважин содержит очень много радона. При кипении или приготовлении горячих блюд радон практически полностью улетучивается. Большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом в ванной комнате или парилке.

Другие источники радиации, к сожалению, созданы самим человеком. Источниками искусственной радиации служат созданные с помощью ядерных реакторов и ускорителей искусственные радионуклеиды, пучки нейронов и заряженных частиц. Они получили название – техногенные источники ионизирующего излучения.

Чрезвычайные ситуации, типа Чернобыльской аварии, могут оказать неконтролируемое воздействие на человека

Высокие дозы радиации представляют смертельную угрозу для человека. Полученная доза в 500 бэр или больше убивает практически любого человека в течение нескольких недель. Доза в 100 бэр может привести к серьезной лучевой болезни. Радиация способствует увеличению раковых заболеваний и вызывает различные дефекты плода.

Ученые утверждают, что человек в среднем ежегодно получает суммарную дозу радиации равную 150-200 милибэр. Большая часть радиации (около 80 миллибэр) поступает из естественных источников радиации или в результате медицинского обследования (около 90 миллибэр). Облучение, полученное вследствие проведения научных исследований составляет 1 миллибэр, от эксплуатации ядерных установок – 4-5, от использования бытовых приборов – 4-5 миллибэр. Доза излучения в воздухе измеряется в рентгенах, а доза, поглащенная живыми тканями, - в радах. Для оценки интенсивности заражения местности введено понятие «мощность дозы радиационного излучения» ЕЕ измеряют в рентгенах (Р), миллирентгенах (мР), микроренгенах (мкР) за час. С момента заражения территории при каждом семикратном увеличении времени уровень радиации снижается в 10 раз. Если через час уровень радиации на местности был 100Р/ч, то через 7 ч он будет равен 10 Р/ч, а через 49ч – 1 Р/ч.

В организме человека непрерывно протекают окислительные процессы, сопровождающиеся образованием тепла. Вместе с тем непрерывно происходит и отдача тепла в окружавшую среду. Совокупность процессов, обуславливающих теплообмен человека с окружающей средой, называется терморегуляцией.

Сущность терморегуляции заключается в следующем. В обычных условиях в организме человека поддерживается постоянное соотношение между приходом и расходом тепла, благодаря чему температура тела сохраняется на уровне 36...З7°С, необходимом для нормального функционирования организма. При понижении температуры воздуха организм человека реагирует на это сужением поверхностных кровеносных сосудов, в результате чего уменьшается приток крови к поверхности тёла и температура их снижается. Это сопровождается уменьшением разности температур между воздухом и поверхностью тела и, следовательно, уменьшением теплоотдачи. При повышении температуры воздуха терморегуляция вызывает в организме человека обратные явления.

Тепло с поверхности тела человека, отдаётся путем излучения, конвекции и испарения.

Под излучением понимается поглощение лучистого тепла организма человека окружающими его твердыми телами (пол, стены, оборудование), если их температура ниже температуры поверхности тела человека.

Конвекция - непосредственная отдача тепла поверхности тела менее нагретым притекающим к нему слоям воздуха. Интенсивность теплоотдачи при этом зависит от площади поверхности тела, разности температуры тела и окружающей среды и скорости движения воздуха.

Испарение пота с поверхности тела также обеспечивает отдачу тепла организмом окружающей среде. На испарение 1г влаги требуется около 0.6 ккал тепла.

Тепловое равновесие организма также зависит от наличия вблизи рабочих мест сильно нагретых поверхностей оборудования или материалов (печи, раскаленный металл и т.д.). Такие поверхности отдают при излучении тепло менее нагретым поверхностям и человеку. Самочувствие человека, не защищенного от воздействия тепловых лучей, будет зависеть от интенсивности облучения и его продолжительности, а также от площади облучаемой поверхности кожи. Длительное облучение даже небольшой интенсивности может привести к ухудшению самочувствия.

Наличие в помещении холодных поверхностей также отрицательно влияет на человека, увеличивая отдачу тепла излучением с поверхности его тела. В результате этого у человека появляется озноб и ощущение холода. При низкой температуре окружающей среды теплоотдача организма усиливается, теплообразование не успевает компенсировать потери. Кроме того, переохлаждение организма в течение длительного времени может привести к простудным заболеваниям и ревматизму.

На тепловое равновесие человека существенное влияние оказывает влажность окружающего воздуха и степень его подвижности. Наиболее благоприятные условия для теплообмена при прочих равных условиях создаются при влажности воздуха 40...60% и температуре около +18°С Воздушная среда характеризуется значительной сухостью при ее влажности ниже 40%, а при влажности воздуха выше 60% - повышенной влажностью. Сухой воздух вызывает повышенное испарение влаги с поверхности кожного покрова, слизистых оболочек организма, поэтому у человека возникает ощущение сухости этих участков. И наоборот, при повышенной влажности воздуха испарение влаги с поверхности кожи затруднено.

Подвижность воздуха в зависимости от его температуры может по-разному влиять на самочувствие человека. Температура движущегося воздуха должна быть не выше +З5°С. При низкой температуре движение воздуха ведет к переохлаждению организма вследствие повышения теплоотдачи путем конвекции, что подтверждается характерным примером: человек легче переносит холод при неподвижном воздухе по сравнению с ветреной погодой при той же температуре. При температуре воздуха выше +35"С единственным путем теплоотдачи с поверхности тела человека является практически испарение.

В горячих цехах, а также на отдельных рабочих местах температура воздуха может доходить до 30...40°С. В таких условиях значительная часть тепла отдается за счет испарения пота. Организм человека в таких условиях может за смену терять до 5...8л воды путем потоиспарения, что составляет 7...10% веса тела. При потении человек теряет большое количество солей, витаминов, жизненно важных для организма. Организм человека обезвоживается и обессоливается.

Постепенно он перестает справляться с отдачей тепла, что приводит к перегреву тела человека. У человека появляется ощущение слабости, вялости. Его движения замедляются, а это приводит, а свою очередь, к снижению производительности труда.

С другой стороны, нарушение водно-солевого состава организма человека сопровождается нарушением деятельности сердечно-сосудистой системы, питания тканей и органов, сгущением крови. Это может привести к «судорожной болезни», характеризующейся появлением резких судорог, преимущественно в конечностях. Температура тела при этом повышается незначительно, или не повышается вовсе. Меры первой помощи при этом направлены на восстановление водно-солевого баланса и заключаются в обильном введении жидкости, в отдельных случаях - во внутривенном или подкожном введении физиологического раствора в сочетании с глюкозой. Большое значение при этом имеет также покой и ванны.

Резкие нарушения теплового баланса вызывают заболевание, называемое тепловой гипертермией, или перегревом. Это заболевание характеризуется повышением температуры тела до +40...41°С и выше, обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, потемнением в глазах, шумом в ушах, иногда помрачением сознания. Меры первой помощи при этом заболевании сводятся, в основном, к предоставлению заболевшему условий, способствующих восстановлению теплового баланса: покой, прохладные души, ванны.

Список литературы

Для подготовки данной работы были использованы материалы с сайта

Метеорологические условия (микроклимат) характеризуется параметрами:

2.1.Температура воздуха, 0 С;

2.2. Относительная влажность воздуха;

2.3. Скорость движения воздуха, м/с;

2.4 Интенсивность теплового излучения (облучения работающих), Вт/м 2

2.5. Температура поверхностей ограждающих конструкций (стены помещения, пол,

потолок, окна).

Температура воздуха – это параметр характеризующий его тепловое состояние и определяется кинетической энергией движения молекул газов.

Микроклимат оказывает существенное влияние на общее состояние и работоспособность человека так как он постоянно находится в состоянии теплового обмена с окружающей средой. Нормальное протекание физиологических процессов в организме человека возможно лишь тогда, когда выделяемое тепло с поверхности тела человека отводится в окружающую воздушную среду, при условии её количественного показателя температуры, находящегося в пределах ниже нормальной температуры тела здорового человека (+ 36 . . .37 0 С, среднестатистический медицинский показатель 36,6 0 С).

Оптимальные климатические условия характеризуются уравнением теплового баланса организма, при котором теплопередача от организма человека равна теплообразованию, благодаря чему температура тела сохраняется в нормальных пределах. Уравнение теплового баланса может быть представлено выражением:

Q к = Q из + Q ис + Qв, (1)

Где Q к - Суммарная теплоотдача организма в окружающую среду (Дж, Вт);

Q - Теплоотдача излучением (Дж, Вт);

Q - Теплоотдача в результате испарения пота (Дж, Вт);

Q - Теплоотдача при выдыхании воздуха (Дж, Вт).

Условия воздействия микроклиматических факторов на организм человека определяется термостабильностью и терморегуляцией. Термостабильность определяется непосредственно за счёт терморегуляции оргвнизма.

Термостабильность – параметр теплового самочувствия человека, определяющий способность организма к восстановлению посредством сохранения его теплового баланса.

Терморегуляция – это способность организма поддерживать температуру тела в определённых постоянных границах (близких 36,6 0 С) при изменении внешних условий и тяжести выполняемой работы. Терморегуляция осуществляется за счёт установления оптимальных равновесных тепловых соотношений путём снижения уровня обмена веществ при угрозе перегревания или охлаждения организма (химическая терморегуляция ), а также отдачей тепла в окружающую среду (физическая терморегуляция ). Нарушение теплообмена усугубляет воздействие на человека материальных (вредные вещества) и энергетических производственных факторов (инфразвук, шум, ультразвук.

Процессы регулирования тепловыделений могут осуществляться по четырем принципиальным механизмам:


1. терморегуляция путём изменения интенсивности кровообращения - заключается в регуляции организмом подачи крови от внутренних органов к поверхности тела за счёт расширения или сужения подкожных кровеносных сосудов:

2. биохимическая терморегуляция - заключается в изменении интенсивносит происходящих в организме человека окислительных биохимических реакций:

3. терморегуляция путём изменения интенсивности потоотделения – заключается в изменении количества испарённой влаги (пота), приводя к испарительному охлаждению тела человека:

4. суммарная терморегуляция осуществляется всеми указанными механизмами.

Производственная среда может дополнительно характеризоваться радиацией, электрическим состоянием воздушной среды, окружающей рабочее место.

В горячих цехах или при работе на холоде дополнительно учитывается так называемая тепловая нагрузка среды, характеризующаяся либо повышенным тепловым облучением, либо воздействием пониженных или отрицательных температур.

При высотных полётах в дополнение к параметрам учитывается барометрическое давление, радиация и ионизация воздуха.

Отклонение величин перечисленных факторов от нормативных значений могут влиять как на характеристики технологического процесса, так и качество изделий и выполняемой работы (повышенная влажность воздуха при склеивании деталей ухудшает качество соединений и т.п.). Кроме того, повышенная температура опасна для электрических кабелей и проводов из-за изменения свойств их изоляции, а в сочетание с повышенной влажностью производственной среды может быть причиной короткого замыкания в электрических цепях и рассматриваться как опасный производственный фактор.

Факторы, влияющие на микроклимат можно разделить на 2 группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, кратность воздухообмена, количество людей в помещениях и другие).

Для поддержания параметров воздушной среды рабочих зон решающее значение принадлежит факторам второй группы.

2.1.1 Влияние изменения температуры внешней среды на тепловое самочувствие человека

Тепловое самочувствие человека, или тепловой баланс, в системе «человек-среда обитания» зависит от температуры среды, подвижности и относительной влажности воздуха, атмосферного давления, температуры окружающих предметов и интенсивности физической нагрузки органи зма.

Повышение температуры воздуха в производственном помещении способствует увеличению теплоотдачи за счет испарения, а также из-за интенсивности кровообращения, так как при повышенной температуре кровеносные сосуды человека расширяются, то потеря тепла за счет теплопроводности, конвекции и нагрева выдыхаемого воздуха уменьшается.

Понижение температуры и повышение скорости воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. При повышении температуры воздуха возникают обратные явления.

Исследованиями установлено, что при температуре воздуха более 30С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116С

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при tОС=30С так, как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем загрязнения болезнетворными микроорганизмами. Поэтому при длительном пребывании людей в закрытых помещениях рекомендуется ограничивать относительную влажностью в пределах 3070процентов.

Вместе с потом организм теряет значительное количество минеральных солей (до 1%, в том числе 0,40,6% NaCl). При неблагоприятных условиях потеря жидкости может достигать 810 л за смену и в ней до 60г поваренной соли (всего в организме около 140г NaCl). Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки. Считается допустимым для человека снижение его массы на 23% путём испарения влаги - обезвоживания организма. Обезвоживание на 6% влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарения влаги на 1520% приводит к смертельному исходу.

Для восстановления водного баланса людям, работающим в горячих цехах, устанавливают автоматы с подсоленной (около 0,5% NaCl) газированной питьевой водой из расчета 45л на человека в смену. На многих заводах для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или зеленый чай.

Длительное воздействие высокой температуры, особенно в сочетании с повышенной влажностью, может привести к перегреванию организма выше допустимого уровня- гипертермии. Состоянию, при котором температура тела поднимается до 3839С. Гипертермия (тепловой удар) сопровождается головной болью, головокружением, общей слабостью, искажением цветового восприятия, сухостью во рту, тошнотой, рвотой, обильным выделением пота. Пульс и дыхание учащены, в крови увеличивается содержание азота и молочной кислоты. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной переохлаждения организма - гипотермии. При продолжительном действии холода дыхание становится неритмичным, изменяется углеводный обмен. Увеличение обменных процессов при понижении температуры на 1С составляет около 10%, а при интенсивном охлаждении может возрасти в 3 раза по сравнению с уровнем основного обмена. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.


2.1.2 Атмосферное давление

Атмосферное давление оказывает существенное влияние на процесс дыхания и самочувствие человека. Основным органом дыхания человека, посредством которого осуществляется газообмен с окружающей средой, является трахеобронхиальное дерево и большое число лёгочных пузырей (альвеол), стенки которых пронизаны густой сетью капиллярных сосудов. Общая поверхность альвеол взрослого человека составляет 90150м3. Через стенки альвеол кислород поступает в кровь для питания тканей организма.

Интенсивность диффузии кислорода в кровь определяется парциальным давлением (p) кислорода в альвеолярном воздухе.

Наиболее успешно диффузия кислорода в кровь происходит при парциальном давлении кислорода (?) в пределах 95120мм.рт.ст. Изменение парциального давления, вне данных пределов приводит к затруднению дыхания и увеличению нагрузки на сердечно-сосудистую систему. На высоте 23км (p = 70мм.рт.ст.) насыщение крови кислородом снижается до такой степени, что вызывает усиление деятельности сердца и легких. Длительное пребывание человека в этой зоне не сказывается на его здоровье, и она называется зоной достаточной компенсации. С высоты 4км (p = 60мм.рт.ст.) диффузия кислорода из легких в кровь снижается до такой степени, что, несмотря на большое содержание кислорода (21%), может наступить кислородное голодание - гипоксия. Основные признаки гипоксии - головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.

Удовлетворительное самочувствие человека при дыхании воздухом сохраняется до высоты около 4 км, чистым кислородом (100%) до высоты 12 км. При длительных полётах на летательных аппаратах на высоте более 4 км применяют либо кислородные маски, либо скафандры, либо герметизацию кабин. При нарушении герметизации давление в кабине резко снижается. Часто этот процесс протекает быстро, что имеет характер своеобразного взрыва и называется взрывной декомпрессией. Эффект воздействия взрывной декомпрессии на организм зависит от начального значения и скорости понижения давления.

В общем случае, чем меньше скорость понижения давления, тем легче она переносится. Уменьшение давления на 385 мм. рт. ст. за 0,4 с человек переносит без каких-либо последствий. При этом новое давление, которое возникает в результате декомпрессии, может привести к высотному метеоризму и высотным эмфиземам. Высотный метеоризм - это расширение газов, имеющихся в свободных полостях тела (на высоте 12 км объём желудка и кишечного тракта увеличивается в 5 раз). Высотные эмфиземы, или высотные боли, - это переход газа из растворенного состояния в газообразное.

В период компрессии (повышения давления) и пребывания при повышенном давлении организм через кровь насыщается азотом. Полное насыщение организма азотом наступает через 4 часа пребывания в условиях повышенного давления.

При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса. Длительное пребывание при избыточном давлении (порядка 700 кПа) приводит к токсическому действию некоторых газов, входящих в состав вдыхаемого воздуха. Оно проявляется в нарушении координаций движений, возбуждении или угнетении, галлюцинациях, ослаблении памяти, расстройстве зрения и слуха.

В процессе декомпрессии вследствие падения парциального давления в альвеолярном воздухе происходит десатурация (выделение) азота из тканей, которое осуществляется через кровь и затем легкие. Если декомпрессия производится форсированно, в крови и других жидких средах образуются пузырьки азота, которые вызывают газовую эмболию (закупорка сосудов газами) и как её проявление - декомпрессионную болезнь. Тяжесть декомпрессионной болезни определяется массовостью закупорки сосудов и их локализацией. Развитию декомпрессионной болезни способствует переохлаждение или перегревание организма. Понижение температуры приводит к сужению сосудов, замедлению кровотока, что замедляет удаление азота из тканей и процесс десатурации. При высокой температуре наблюдается сгущение крови и замедление её движения.

2.1.3 Влажность воздуха

Влажность воздуха определяется содержанием в нем водяных паров и измеряется в абс олютных и относительных единицах. Она характеризуется абсолютной, максимальной и относительной влажностью, а также дефицитом насыщения.

Абсолютная влажность - упругость водяных паров, находящихся в рассматриваемый момент в воздухе, выраженное в миллиметрах ртутного столба или количество водяных паров в граммах, содержащихся в 1 м3 воздуха в момент исследования.

Максимальная влажность - упругость водяных паров при полном насыщении воздуха влагой при определенной температуре или количество водяных паров в граммах, содержащихся в 1м3 воздуха при той же температуре.

Относительная влажность представляет собой отношение значений абсолютной и максимальной влажности, выраженное в процентах.

Дефицит насыщения (физиологический) - разность между значениями влажности воздуха пи температуре 37С (температура тела человека) и абсолютной в момент исследования. Он указывает, сколько граммов воды может извлечь из организма человека 1м3 выдыхаемого им воздуха.

Дефицит насыщения относится к одному из влажных экологических параметров, так как характеризует сразу 2 параметра - влажность и температуру. Чем выше дефицит насыщения, тем суше и теплее, и наоб орот.

Важной характеристикой влажности воздуха является такое понятие, как точка росы.

Точка росы характеризуется температурой, при которой воздух становится насыщенным водяными параметрами, переходящими в капельножидкое состояние - появление росы. Точку росы определяют по абсолютной влажности. Зная точку росы, можно графически определить парциальное давление водяного пара, а, следовательно, и относительную влажность.

Гигиеническое значение влажности воздуха определяется влиянием на тепловой обменорганизма.

error: