АТФ (аденозинтрифосфорная кислота). Атф - инструкция, применение, отзывы Анализ атф что

Аденозин-5′-трифосфорная кислота, или трифосфорный эфир 9- b -D-рибофуранозида.

Аденозинтрифосфорная кислота, или аденозинтрифосфат (АТФ), является естественной составной частью тканей организма человека и животных.

Она образуется при реакциях окисления и в процессе гликолитического расщепления углеводов. Особенно богаты ею мышцы из поперечнополосатой гладкой мышечной ткани. Ее содержание в скелетных мышцах достигает 0,3 %.

АТФ участвует во многих процессах обмена веществ. При взаимодействии с актомиозином она распадается на аденозиндифосфорную кислоту (АДФ) и неорганический фосфат, при этом освобождается энергия, значительная часть которой используется мышцами для осуществления механической работы, а также синтетических процессов (синтез белка, мочевины и промежуточных продуктов обмена веществ). При дистрофических процессах в мышцах наблюдается уменьшение ее содержания в мышечной ткани или нарушение процессов ее ресинтеза. АТФ рассматривается как один из медиаторов возбуждения в аденозиновых (пуринергических) рецепторах (О медиаторных и других свойствах аденозина см. Теофиллин, Сердечные гликозиды, Кофеин.). Кроме того, он участвует в передаче нервного возбуждения в адренергических и холинергических синапсах, облегчает проведение возбужиения в вегетативных узлах и в передаче возбуждения с блуждающего нерва на сердце. Считают также, что АТФ является ингибиторным медиатором в области желудочно-кишечного тракта, высвобождающимся постганглионарными волокнами, выходящими из ауэрбаховского (межмышечного нервного) сплетения, а также возбуждающим медиатором в тканях мочевого пузыря.

Экспериментальные данные показывают, что АТФ усиливает мозговое и коронарное кровообращение.

Для медицинского применения АТФ получают из мышечной ткани животных.

АТФ - белый кристаллический гигроскопический порошок. Для медицинского применения выпускается раствор натрия аденозинтрифосфата 1 % для инъекций (Solutio Natrii adenosintriphosphatis 1 % рro injectionibus).

Раствор натрия аденозинтрифосфата представляет собой бесцветную или слегка желтоватую жидкость; рН 7, 0 -7, 3.

Ранее относительно широко применяли АТФ при хронической коронарной недостаточности. Установлено, однако, что для ее проникновения через клеточные мембраны требуется большое количество энергии, что ставит под сомнение роль АТФ как источника энергии для обеспечения сократительной способности миокарда и улучшения в нем метаболических процессов.

Основное применение натрия аденозинтрифосфат имеет в настоящее время в комплексной терапии мышечной дистрофии и атрофии, спазмах периферических сосудов (перемежающейся хромоте, болезни Рейно, облитерирующем тромбангиите). Иногда применяют для стимулирования родовой деятельности.

В последние годы установлено, что АТФ может быть с успехом использован для купирования пароксизмов наджелудочковых тахикардий. Полагают, что действие обусловлено образующимся при распаде АТФ аденозином, подавляющим автоматизм синусно-предсердного узла и сердечных проводящих миоцитов (волокон Пуркинье). Частично эффект связан с блокадой мембранных кальциевых каналов, увеличением проницаемости мембран миокарда для ионов калия.

Для лечения мышечных дистрофий, нарушений периферического кровообращения и других заболеваний АТФ обычно назначают внутримышечно. В первыедня вводят 1 раз в день по 1 мл 1 % раствора, и в последующие дни 2 раза в день или сразу 2 мл 1 % раствора 1 раз в день. Курс лечения состоит изинъекций.

Повторяют курс в зависимости от эффекта черезмес.

Для купирования наджелудочковых тахиаритмий вводят внутривенно в доземг (1- 2 мл 1 % раствора). Вводят быстро (в течениес). Эффект наступает примерно черезс.

При необходимости повторяют введение препарата черезмин.

При внутримышечном введении АТФ возможны головная боль, тахикардия, усиление диуреза, при внутривенном введении - тошнота, головная боль, покраснение лица. Эти явления проходят самостоятельно.

Не следует назначать АТФ при остром инфаркте миокарда.

Хранение: в защищенном от света месте при температуре от + 3 до + 5 ‘С.

Анализ атф что это

Установлено, что аспирин (Аsp) и его комплексные производные – ацетилсалицилаты кобальта (АСК) и цинка (АСЦ) способны изменять электрические потенциалы нейронов ЦНС . Ранее нами было показано , что нейротропное действие салицилатов может реализовываться с участием циклических нуклеотидов (цАМФ и цГМФ), а роль других вторичных посредников в его механизме ещё не ясна. Есть лишь сведения о том, что Аsp и его производные угнетают синтез аденозинтрифосфата (АТФ) , однако это явление не связывают с нейротропными эффектами салицилатов. Известно, что в нейронах АТФ используется для работы ионных насосов и каналов и способен дефосфорилироваться до цАМФ – мессенджера аденилатциклазного каскада передачи сигналов внутрь клетки и агониста P2-рецепторов ионных каналов, а продукт его распада – аденозин – регулирует деятельность P1–рецепторов . Вышеизложенное позволяет предположить, что механизм нейротропного действия Аsp и его производных может в значительной степени определяться изменением вне- и внутриклеточной концентрации АТФ. Обращает внимание и отсутствие в литературе данных о роли Са2+ в эффектах салицилатов, хотя известно, что эти ионы могут влиять на возбудимость нейронов и внутриклеточные процессы в них, в том числе и связанные с циклическими нуклеотидами .

Таким образом, целью этой работы явилось изучение роли АТФ-зависимых и кальциевых механизмов в реализации нейротропного действия Аsp и его производных – АСК и АСЦ.

Материалы и методы исследования

Исследования проведены на 159 неидентифицированных нейронах висцерального и правого париетального ганглиев улитки Helix albescens Rossm. Для этого окологлоточное нервное кольцо препарировали из тела улитки, фиксировали в экспериментальной камере (объём 0,5 мл) с постоянным протоком раствора Рингера для холоднокровных животных (NaCl – 100, KCl – 4, CaCl2 – 10, MgCl2 – 4, трис-HCl – 10, состав указан в миллимолях на 1 л; температура 18–21 °С, pH = 7,5) и удаляли наружные соединительнотканные оболочки . Затем проток раствора Рингера перекрывали и однократно апплицировали в объёме 1 мл разведённые им до необходимых концентраций вещества. В эксперименте использовали Аsp, BaCl2, CdCl2 («Merk», Германия), АТФ («Здоровье народа», Украина), АСК, АСЦ (синтезированы на кафедре общей химии Таврического национального университета им. В.И. Вернадского) с химической чистотой не менее 95 %. Электрические потенциалы нейронов регистрировали и записывали методом внутриклеточного отведения с помощью физиологической установки и программы «Action Potential» по схеме: фон (1 мин); экспозиция раствора тестируемого вещества – контроль (4 мин.); экспозиция того же вещества (4 мин) в сочетании с одним из агентов (АТФ, CdCl2, BaCl2); отмывание (20 мин). С помощью указанной программы рассчитывали амплитудно-временные характеристики потенциалов нейронов и оценивали скорость нарастания суммарных трансмембранных ионных токов . Статистическую обработку результатов осуществляли с помощью критерия Вилкоксона.

Результаты исследования и их обсуждение

Нейротропные эффекты индивидуальных и сочетанных с аденозинтрифосфатом растворов аспирина, ацетилсалицилатов кобальта и цинка. В данной серии экспериментов были исследованы эффекты индивидуального и сочетанного с АТФ приложения во внеклеточную среду растворов Аsp, АСК, АСЦ. Концентрация каждого вещества в окружающем нейроны растворе составляла 5∙10–4 M. Такая концентрация является физиологической внутри клеток для АТФ , и именно в ней Аsp, АСК и АСЦ оказывают выраженное нейротропное действие .

Приложение к наружной поверхности мембран нейронов (n = 8) индивидуального раствора АТФ в концентрации 5∙10–4 M не оказывало достоверного влияния на исследуемые параметры их электрической активности. В данном случае отсутствие эффектов объясняется тем, что дополнительные поступления АТФ разрушаются ферментами экто-АТФазами до аденозина .

Экспозиция индивидуального раствора Аsp (n = 11) в концентрации 5∙10–4 M приводила к характерному угнетению электрической активности нейронов: снижала частоту генерации импульсов (ЧГИ), уменьшала амплитуду потенциалов действия (ПД) и увеличивала негативность мембранного потенциала (МП) (рис. 1, а, 1–2). При этом на уровне тенденции снижалась скорость нарастания входящих и увеличивалась (p < 0,05) – скорость нарастания выходящих трансмембранных ионных токов (рис. 1, а, 3–4).

Рис. 1. Нейротропные эффекты индивидуальных и сочетанных с 5∙10–4 М аденозинтрифосфатом (АТФ) растворов аспирина, ацетилсалицилатов кобальта и цинка в концентрации 5∙10–4 М. Примечание: Аsp – аспирин, АСК – ацетилсалицилат кобальта, АСЦ – ацетилсалицилат цинка. Тестируемые растворы отмечены на диаграммах. Горизонтальной жирной линией обозначены значения фоновых показателей, принятые за 100 %; 1 – частота генерации импульсов, 2 – амплитуда потенциалов действия, 3 – скорость суммарных входящих ионных токов, 4 – скорость суммарных выходящих ионных токов, 5 – мембранный потенциал.1’ – 5’ – показатели электрической активности при сочетанной экспозиции салицилатов с АТФ. n – количество исследованных нейронов; * – p < 0,05, ** – p < 0,01 – достоверные изменения показателей контроля по сравнению с фоном; ■ – p < 0,05, ■■ – p < 0,01 достоверные изменения показателей эксперимента по сравнению с контролем

По сравнению с эффектами индивидуального раствора Аsp воздействие АК + АТФ (n = 11) увеличивало ЧГИ (p < 0,01) исследованных нейронов на 39,9 % (рис. 1, б, 1 и 1’). Таким образом, в присутствии АТФ угнетение ЧГИ, вызванное Аsp, нивелировалось. Это сопровождалось увеличением на уровне тенденции скорости нарастания суммарных входящих трансмембранных ионных токов и снижением – выходящих (рис. 1, а, 3–3’, 4–4’). Указанные изменения свидетельствуют о возрастании при действии АТФ и (или) продукта его распада – аденозина –проницаемости наружных мембран нейронов для Na+ и, возможно, Ca2+. Следует напомнить, что в плазматической мембране многих нейронов моллюсков Ca2+ -каналы отсутствуют, а добавление АТФ неспецифически нивелировало угнетающие эффекты Аsp у всех исследованных нейронов. Поэтому мы считаем, что повышение уровня внеклеточного АТФ приводило главным образом к активации Na+ -каналов. Раствор Аsp + АТФ на уровне тенденции также снижал и скорость нарастания суммарных выходящих ионных токов, что указывает на некоторое снижение проницаемости мембран для К+ (рис. 1, А, 4–4’). Это может быть связано с инактивацией АТФ-зависимого тока К+ .

Поскольку угнетающие нейротропные эффекты Аsp устранялись добавлением АТФ в окружающий нейроны раствор в количестве соответствующем его внутриклеточной физиологической концентрации, это даёт основание полагать, что механизм такого эффекта связан с нарушением синтеза АТФ на внутриклеточных мембранах нейронов и сокращением его выброса во внеклеточное пространство. Вызванный Аsp недостаток АТФ внутри и вне клеток может быть причиной снижения функциональной активности нейронов за счёт замедления скорости энергозависимых и опосредованных пуринэргической сигнализацией внутриклеточных процессов. Например, могла нарушаться электрогенная функция Na+–К+-насоса, активироваться АТФ-зависимый ток К+ .

Приложение растворов АСК и АСЦ достоверно повышало ЧГИ по сравнению с фоном, а добавление к этим агентам АТФ ещё больше увеличивало ЧГИ – на 19,2 и 26,8 % соответственно (p < 0,05; рис. 2, б и в, 1–1’). Растворы АСК + АТФ и АСЦ + АТФ достоверно (p < 0,01) уменьшали (рис. 1, б и в, 3’–4’) скорость нарастания суммарных выходящих ионных токов. Данные изменения свидетельствуют об ингибирующем действии АТФ на К+-каналы. Согласно данным , это может быть связано с инактивацией АТФ-зависимых К+-каналов, которые были обнаружены и в нейронах брюхоногих моллюсков. Кроме того, все протестированные соли в сочетании с АТФ на уровне тенденции увеличивали скорость нарастания суммарных входящих ионных токов (рис. 1, б-в, 3’), что согласно указывает на увеличение проницаемости натриевых и, возможно, кальциевых ионных каналов.

Не исключено, что усиление активирующих эффектов АСК и АСЦ при добавлении к ним АТФ может быть результатом и непосредственной активации тестируемыми солями синтеза АТФ на мембранах нейронов. В этом случае последовательность событий, происходящих в нейронах при воздействии растворов АСК + АТФ и АСЦ + АТФ, может быть следующей:

1. Под влиянием АСК, АСЦ происходит увеличение продукции АТФ на внутриклеточных мембранах и его выброса в наружную среду, а добавление АТФ во внеклеточную среду ещё больше увеличивает его содержание здесь.

2. Увеличение уровня АТФ выше физиологических концентраций может запускать последовательные реакции его дефосфорилирования экто-АТФазами и эктонуклеотидазами мембран . Однако слишком большое количество АТФ, по-видимому, вызывает полное субстратное насыщение активных центров этих ферментов, разрушающих АТФ до аденозина.

3. Замедляется распад АТФ, вследствие чего он модулирует фукционирование ионных каналов, управляемых P2 рецепторами. Аденозин, образовавшийся в результате распада АТФ, может стимулировать процессы, опосредуемые P1 рецепторами.

Ранее нами было показано, что облегчающее и модулирующее влияние салицилатов на нейроны улитки опосредуется цАМФ , который является активатором/ингибитором различных подтипов P2 и P1 рецепторов . В присутствии растворов АСК и АСЦ мы тоже наблюдали медленноволновые колебания МП, которые согласно указывают на изменения концентрации цАМФ и цГМФ. Всё это свидетельствует в пользу предлагаемой нами выше схемы для объяснения эффектов сочетанного воздействия АТФ и солей Аsp, поскольку изменение концентрации цАМФ в нейронах может быть вызвано эффектами АТФ и аденозина , а в отношении самого Аsp известно, что он не только угнетает синтез АТФ, но и уменьшает содержание цАМФ . Мы полагаем, что активирующие нейротропные эффекты АСК и АСЦ, в отличие от угнетающих Аsp, обусловлены увеличением синтеза АТФ и, следовательно, цАМФ. Если это так, то можно считать, что в механизме эффектов АСК и АСЦ значительную роль играют внеклеточный уровень АТФ и, по-видимому, его продукта – аденозина.

Нейротропные эффекты аспирина и его производных при блокаде входящего кальциевого тока хлоридом кадмия. Для выяснения роли входящего трансмембранного кальциевого тока в нейротропных эффектах Asp, АСК и АСЦ в серии экспериментов мы использовали его блокатор – CdCl2 . Как видно из рис. 2, эффекты приложения индивидуальных и сочетанных с CdCl2 растворов указанных веществ в концентрациях 5∙10–5 и 5∙10–4 М существенно не отличались.

Рис. 2. Нейротропные эффекты приложения индивидуальных и сочетанных с CdCl2 растворов аспирина, ацетилсалицилатов кобальта и цинка. Примечание: концентрации веществ и CdCl2 в применяемых растворах 5∙10-5 (А, В, Д) и 5∙10-4 М (Б, Г, Е) Остальные обозначения те же, что и на рис. 1

Поскольку CdCl2 не изменял нейротропные эффекты тестируемых веществ, можно полагать, что они практически не связаны с входящим трансмембранным током Ca2+. Иными словами можно считать, что салицилаты не увеличивают проницаемость наружных мембран нейронов для Ca2+. Есть даже основания предполагать, что Аsp, АСК и АСЦ сами блокируют этот ионный ток.

Однако отсутствие поступления Ca2+ из внеклеточной среды в нейроплазму могло компенсироваться за счет выделения Ca2+ из внутриклеточных депо и благодаря ингибированию Ca2+-АТФ-азы плазматических мембран (PMCA), которая способствует выведению Са2+ из клетки против градиента его концентрации, ионами Сd2+ . Для того, чтобы выяснить, так ли это, в следующей серии экспериментов вместо хлорида кадмия мы апплицировали на мембраны нейронов хлорид бария – блокатор выделения Са2+ из внутриклеточных депо, входящего тока Са2+ и выходящего Са2+ -зависимого калиевого тока . Следует напомнить, что ионы Ва2+ не влияют на работу PMCA .

Рис. 3. Нейротропные эффекты приложения индивидуальных и сочетанных с BaCl2 растворов аспирина, ацетилсалицилатов кобальта и цинка. Примечание: концентрации тестируемых кислот и BaCl2 в используемых растворах 5∙10-5 (А, В, Д) и 5∙10-4 М (Б, Г, Е). Остальные обозначения те же, что и на рис. 1

Эффекты аспирина и его производных при блокаде хлоридом бария поступления ионов кальция в нейроплазму из наружной среды и внутриклеточных депо. Эффекты 5∙10–5 и 5∙10–4 М индивидуальных Аsp, АСК и АСЦ достоверно не отличались от их эффектов в сочетании с BaCl2 (рис. 3). Исключением было лишь снижение МП (p < 0,05) при действии 5∙10–5 М раствора Аsp + BaCl2 (рис. 3, а, 5–5’). Отмеченные изменения МП согласуются со сведениями литературы о том, что BaCl2 может снижать МП. Полученные результаты свидетельствуют о том, что в механизмах нейротропного действия тестируемых салицилатов ионы Са2+ не участвуют.

Однако следует учесть, что вызванное блокаторами уменьшение поступления Са2+ в нейроплазму может компенсироваться за счёт других механизмов. Например, Сd2+ и Bа2+ эффективно блокируют потенциалзависимые L и N каналы входящего кальциевого тока и не оказывают существенного влияния на Т каналы , хотя они и встречаются редко в мембранах нейронов моллюсков . Другой путь поступления Са2+ в нейроплазму при действии салицилатов и BaCl2 может обеспечиваться благодаря работе Na+–Са2+ -обменников, при этом направление переноса Са2+ через наружную мембрану зависит от концентрации Na+ по обе её стороны . При поступлении Na+ внутрь клетки, Na+–Са2+ -обменники способствуют выводу Na+ из клетки и накоплению в нейроплазме Са2+ из внеклеточной среды и внутриклеточных депо . Это могло происходить и в присутствии Ва2+, обладающих меньшим сродством к внеклеточным сайтам Na+–Са2+ -обменников, чем Са2+ .

1. Нейротропные эффекты аспирина, ацетилсалицилатов кобальта и цинка существенно зависят от содержания во внеклеточной среде АТФ. Механизм угнетающего нейротропного действия аспирина в значительной степени связан со снижением концентрации АТФ во внеклеточной среде, а активирующие эффекты ацетилсалицилатов кобальта и цинка усиливаются в присутствии АТФ.

2. Блокирование входящего тока и выделения Са2+ из внутриклеточных депо с помощью CdCl2 и ВаCl2 показало, что эти ионы не участвуют в реализации нейротропного действия аспирина, ацетилсалицилатов кобальта и цинка. Однако существуют другие механизмы поступления Са2+ в нейроплазму, которые не подвержены действию использованных нами блокаторов (функционирование Т-каналов входящего кальциевого тока, работа Na+–Са2+-обменников). Участие этих механизмов в нейротропном действии салицилатов ещё предстоит выяснить.

Библиографическая ссылка

URL: http://natural-sciences.ru/ru/article/view?id=31749 (дата обращения: 04.04.2018).

кандидатов и докторов наук

Успехи современного естествознания

Журнал издается с 2001 года. В журнале публикуются научные обзоры, статьи проблемного и научно-практического характера. Журнал представлен в Научной электронной библиотеке. Журнал зарегистрирован в Centre International de l’ISSN. Номерам журналов и публикациям присваивается DOI (Digital object identifier).

Биохимический анализ крови – расшифровка

Биохимический анализ крови - лабораторный метод исследования, который используется во всех областях медицины (терапии, гастроэнтерологии, ревматологии и др.) и отражает функциональное состояние различных органов и систем.

Забор для биохимического анализа крови осуществляется из вены, натощак. До исследования не нужно есть, пить и принимать лекарственные препараты. В особых случаях, например при необходимости приема лекарств ранним утром, следует проконсультироваться с вашим лечащим врачом, который даст более точные рекомендации.

Такое исследование предполагает забор крови из вены натощак. Желательно не принимать пищу и какие-либо жидкости, за исключением воды, за 6-12 часов до процедуры. На точность и достоверность результатов анализа влияет, правильной ли была подготовка к биохимическому анализу крови, и соблюдали ли Вы рекомендации врача. Врачи советуют делать биохимический анализ крови в утренние часы и СТРОГО натощак.

Срок исполнения биохимического анализа крови: 1 день, возможен экспресс-метод.

Биохимический анализ крови выявляет количество содержания следующих показателей в крови (расшифровка):

Углеводы. Биохимический анализ крови

Наиболее частым показателем углеводного обмена является содержание сахара в крови. Его кратковременное повышение возникает при эмоциональном возбуждении, стрессовых реакциях, болевых приступах, после приема пищи.

Норма - 3,5-5,5 ммоль/л (тест на толерантность к глюкозе, тест с сахарной нагрузкой).

С помощью данного анализа можно выявить сахарный диабет. Стойкое повышение сахара в крови наблюдается также при других заболеваниях эндокринных желез.

Повышение уровня содержания глюкозы говорит о нарушении обмена углеводов и свидетельствует развитии сахарного диабета. Глюкоза - универсальный источник энергии для клеток, главное вещество, из которого любая клетка человеческого организма получает энергию для жизни. Потребность организма в энергии, а значит, в глюкозе, увеличивается параллельно физической и психологической нагрузке под действием гормона стресса - адреналина. Больше она и во время роста, развития, выздоровления (гормоны роста, щитовидной железы, надпочечников).

Для усвоения глюкозы клетками необходимо нормальное содержание инсулина - гормона поджелудочной железы. При его недостатке (сахарный диабет) глюкоза не может пройти в клетки, уровень ее содержания в крови повышен, а клетки голодают.

Повышение уровня содержания глюкозы (гипергликемия) наблюдается при:

  • сахарном диабете (из-за недостаточности инсулина);
  • физической или эмоциональной нагрузке (из-за выброса адреналина);
  • тиреотоксикозе (из-за повышения функции щитовидной железы);
  • феохромоцитоме - опухоли надпочечников, которые выделяют адреналин;
  • акромегалии, гигантизме (повышается содержание гормона роста);
  • синдроме Кушинга (повышается содержание гормона надпочечников кортизола);
  • заболеваниях поджелудочной железы - таких, как панкреатит, опухоль, муковисцидоз; О хронических заболеваниях печени и почек.

Снижение уровня содержания глюкозы (гипогликемия) характерно для:

  • голодания;
  • передозировки инсулина;
  • заболеваний поджелудочной железы (опухоль из клеток, синтезирующих инсулин);
  • опухолей (происходит избыточное потребление глюкозы как энергетического материала опухолевыми клетками);
  • недостаточности функции эндокринных желез (надпочечников, щитовидной, гипофиза).

Оно также бывает:

  • при тяжелых отравлениях с поражением печени - например, отравлении алкоголем, мышьяком, соединениями хлора, фосфора, салицилатами, антигистаминами;
  • при состояниях после гастрэктомии, заболеваниях желудка и кишечника (нарушение всасывания);
  • при врожденной недостаточности у детей (галактоземия, синдром Гирке);
  • у детей, рожденных от матерей с сахарным диабетом;
  • у недоношенных детей.

Образуется из альбумина крови при кратковременном повышении уровня глюкозы - гликированный альбумин. Используется, в отличие от гликированного 54 гемоглобина, для кратковременного контроля состояния больных сахарным диабетом (особенно новорожденных), эффективности лечения.

Норма фруктозамина: 205 - 285 мкмоль/л. У детей уровень фруктозамина немного ниже, чем у взрослых.

Пигменты. Биохимический анализ крови

Пигменты - билирубин, билирубин общий, билирубин прямой.

Из показателей пигментного обмена наиболее часто определяют билирубин различных форм - оранжево-коричневый пигмент желчи, продукт распада гемоглобина. Образуется он, главным образом, в печени, откуда поступает с желчью в кишечник.

Такие показатели биохимии крови, как билирубин, позволяют определить возможную причину желтухи и оценить ее тяжесть. В крови встречаются два вида этого пигмента - прямой и непрямой. Характерным признаком большинства заболеваний печени является резкое возрастание концентрации прямого билирубина, а при механических желтухах он повышается особенно значительно. При гемолитических желтухах в крови нарастает концентрация непрямого билирубина.

Норма общего билирубина: 5-20 мкмоль/л.

При повышении выше 27 мкмоль/л начинается желтуха. Высокое содержание может быть причиной рака или заболеваний печени, гепатита, отравления или цирроза печени, желчекаменной болезни, либо недостатке витамина B12.

Норма прямого билирубина: 0 - 3,4 мкмоль/л.

Если прямой билирубин выше нормы, то для врача эти показатели билирубина - повод поставить следующий диагноз:

острый вирусный или токсический гепатит

инфекционное поражение печени, вызванное цитомегаловирусом, вторичный и третичный сифилис

желтуха у беременных

гипотиреоз у новорожденных.

Жиры (липиды). Биохимический анализ крови

Липиды - общий холестерин, холестерин ЛПВП, холестерин ЛПНП, триглицериды.

При нарушении жирового обмена повышается содержание в крови липидов и их фракций: триглицеридов, липопротеидов и эфиров холестерина. Эти же показатели имеют значение для оценки функциональных способностей печени и почек при множестве заболеваний.

Об одном из основных липидов - холестерине мы поговорим несколько подробнее.

Липиды (жиры) - необходимые для живого организма вещества. Основной липид, который человек получает из пищи и из которого затем образуются собственные липиды - холестерин. Он входит в состав клеточных мембран, поддерживает их прочность. Из него 40 синтезируются так называемые стероидные гормоны: гормоны коры надпочечников, регулирующие водно-солевой и углеводный обмен, приспосабливающие организм к новым условиям; половые гормоны.

Из холестерина образуются желчные кислоты, участвующие в усвоении жиров в кишечнике.

Из холестерина в коже под действием солнечных лучей синтезируется витамин D, необходимый для усвоения кальция. При повреждении целостности сосудистой стенки и/или избытке холестерина в крови он осаждается на стенку и образует холестериновую бляшку. Это состояние называется атеросклерозом сосудов: бляшки суживают просвет, мешают кровотоку, нарушают гладкость течения крови, усиливают свертываемость крови, способствуют образованию тромбов. В печени образуются различные комплексы липидов с белками, циркулирующие в крови: липопротеиды высокой, низкой и очень низкой плотности (ЛПВП, ЛПНП, ЛПОНП); общий холестерин поделен между ними.

Липопротеиды низкой и очень низкой плотности осаждаются в бляшках и способствуют прогрессирова-нию атеросклероза. Липопротеиды высокой плотности за счет наличия в них специального белка - апопротеина А1 - способствуют «вытягиванию» холестерина из бляшек и играют защитную роль, останавливают атеросклероз. Для оценки риска состояния важен не суммарный уровень содержания общего холестерина, а анализ соотношения его фракций.

Нормы холестерина общего в крови - 3,0-6,0 ммоль/л.

Нормы уровня холестерина ЛПВП для мужчин - 0,7-1,73 ммоль/л, для женщин уровень холестерина крови в норме- 0,86-2,28 ммоль/л.

Повышение его содержания могут обуславливать:

  • генетические особенности (семейные гиперлипопротеи-немии);
  • заболевания печени;
  • гипотиреоз (недостаточность функции щитовидной железы);
  • алкоголизм;
  • ишемическая болезнь сердца (атеросклероз);
  • беременность;
  • прием синтетических препаратов половых гормонов (контрацептивы).

Снижение уровня содержания общего холестерина указывает на:

  • гипертиреоз (избыток функции щитовидной железы);
  • нарушение усвоения жиров.

Снижение может означать:

  • декомпенсированный сахарный диабет;
  • ранний атеросклероз коронарных артерий.
  • гипотиреоз;
  • заболевания печени;
  • беременность;

Другой класс липидов, не являющийся производным холестерина. Повышение содержания триглицеридов может указывать на:

  • генетические особенности липидного обмена;
  • ожирение;
  • нарушение толерантности к глюкозе;
  • заболевания печени (гепатит, цирроз);
  • алкоголизм;
  • ишемическую болезнь сердца;
  • гипотиреоз;
  • беременность;
  • сахарный диабет;
  • прием препаратов половых гормонов.

Снижение уровня их содержания бывает при гипертиреозе и недостаточности питания или всасывания.

Уровень триглицеридов, ммоль/л

Вода и минеральные соли. Биохимический анализ крови

Неорганические вещества и витамины - железо, калий, кальций, натрий, хлор, магний, фосфор, витамин В12, фолиевая кислота.

Анализ крови показывает тесную взаимосвязь обмена воды и минеральных солей в организме. Его обезвоживание развивается при интенсивной потере воды и электролитов через желудочно-кишечный тракт при неукротимой рвоте, через почки при повышенном диурезе, через кожу при сильном потении.

Различные расстройства водно-минерального обмена могут наблюдаться при тяжелых формах сахарного диабета, при сердечной недостаточности, циррозе печени. При биохимическом анализе крови изменение концентрации фосфора, кальция свидетельствует о нарушении минерального обмена, что встречается при заболеваниях почек, рахите, некоторых гормональных нарушениях.

Важные показатели биохимического анализа крови - содержание калия, натрия и хлора. Поговорим об этих элементах и их значении более подробно.

Эти важные элементы и химические соединения обеспечивают электрические свойства клеточных мембран. По разные стороны клеточной мембраны специально поддерживается разница концентрации и заряда: натрия и хлоридов больше снаружи клетки, а калия внутри, но при этом меньше, чем натрия снаружи. Это создает разность потенциалов между сторонами клеточной мембраны - заряд покоя, который позволяет клетке быть живой и реагировать на нервные импульсы, участвуя в системной деятельности организма. Теряя заряд, клетка выбывает из системы, так как не может воспринимать команды мозга. Получается, что ионы натрия и ионы хлора - внеклеточные ионы, ион калия - внутриклеточный.

Кроме поддержания потенциала покоя, эти ионы принимают участие в генерации и проведении нервного импульса - потенциала действия. Регуляция минерального обмена в организме (гормоны коры надпочечников) направлена на задержку натрия, которого не хватает в натуральной пище (без поваренной соли) и выведение калия из крови, куда он попадает при разрушении клеток. Ионы вместе с другими растворенными веществами удерживают жидкость: цитоплазму внутри клеток, внеклеточную жидкость в тканях, кровь - в кровеносных сосудах, регулируя артериальное давление, предотвращая развитие отеков.

Хлориды играют важную роль в пищеварении - они входят в состав желудочного сока.

Что же означает изменение концентрации этих веществ?

  • повреждение клеток (гемолиз - разрушение клеток крови, тяжелое голодание, судороги, тяжелые травмы);
  • обезвоживание;
  • острая почечная недостаточность (нарушение выведения почками); ,
  • надпочечниковая недостаточность.
  • хроническое голодание (непоступление калия с пищей);
  • продолжительные рвота, понос (потеря с кишечным соком);
  • нарушение функции почек;
  • избыток гормонов коры надпочечников (в том числе прием лекарственных форм кортизона);
  • муковисцидоз.
  • избыточное потребление соли;
  • потеря внеклеточной жидкости (профузный пот, тяжелая рвота и диарея, повышенное мочеотделение при несахарном диабете);
  • повышенная функция коры надпочечников;
  • нарушение центральной регуляции водно-солевого обмена (патология гипоталамуса, кома).
  • потеря элемента (злоупотребление мочегонными, патология почек, надпочечниковая недостаточность);
  • снижение концентрации за счет повышения объема жидкости (сахарный диабет, хроническая сердечная недостаточность, цирроз печени, нефротический синдром, отеки).

Нормы натрия в крови (Sodium): 136 - 145 ммоль/л.

  • обезвоживание;
  • острая почечная недостаточность;
  • несахарный диабет;
  • отравление салицилатами;
  • повышенная функция коры надпочечников.
  • избыточное потоотделение, рвота, промывание желудка;
  • увеличение объема жидкости.

Норма хлора в сыворотке крови - 98 - 107 ммоль/л.

Участвует в проведении нервного импульса, особенно в сердечной мышце. Как все ионы, удерживает жидкость в сосудистом русле, препятствуя развитию отеков.

Кальций необходим для мышечного сокращения, свертывания крови. Входит в состав костной ткани и эмали зубов.

Уровень кальция в крови регулируется гормоном паращитовидных желез и витамином D. Паратгормон повышает уровень содержания кальция в крови, вымывая этот элемент из костей, увеличивая его всасывание в кишечнике и задерживая выведение почками.

  • злокачественных опухолях с поражением костей (метастазы, миелома, лейкозы);
  • саркоидозе;
  • избытке витамина D;
  • обезвоживании.
  • снижение функции щитовидной железы;
  • дефицит витамина D;
  • хроническую почечную недостаточность;
  • дефицит магния;
  • гипоальбуминемию.

Норма кальция Са в крови: 2,15 - 2,50 ммоль/л.

Элемент, входящий в состав нуклеиновых кислот, костной ткани и основных систем энергообеспечения клетки - АТФ. Уровень его содержания регулируется параллельно с уровнем содержания кальция.

Если уровень содержания фосфора выше нормы, происходит:

  • разрушение костной ткани (опухоли, лейкоз, саркоидоз);
  • избыточное накопление витамина D;
  • заживление переломов;
  • снижение функции паращитовидных желез.

Снижение уровня содержания фосфора может укаывать на:

  • недостаток гормона роста;
  • дефицит витамина D;
  • нарушение всасывания, тяжелый понос, рвоту;
  • гиперкальциемию.

Норма фосфора в крови

Норма фосфора, ммоль/л

Женщины старше 60 лет

Мужчины старше 60 лет

Антагонист кальция. Способствует расслаблению мышц. Участвует в синтезе белка. Повышение его содержания (ги-пермагниемия) свидетельствует о наличии одного из перечисленных состояний:

  • обезвоживание;
  • почечная недостаточность;
  • надпочечниковая недостаточность;
  • множественная миелома.
  • нарушение поступления и/или всасывания магния;
  • острый панкреатит;
  • снижение функции паращитовидной железы;
  • хронический алкоголизм;
  • беременность.

Норма магния в плазме крови для взрослых - 0,65 - 1,05 ммоль/л.

  • гемолитическая анемия (разрушение эритроцитов и выход их содержимого в цитоплазму);
  • серповидно-клеточная анемия (патология гемоглобина, эритроциты имеют неправильную форму и тоже разрушаются);
  • апластическая анемия (патология костного мозга, эритроциты не образуются, и железо не используется);
  • острый лейкоз;
  • избыточное лечение препаратами железа.

Снижение уровня содержания железа может указывать на:

  • железодефицитную анемию;
  • гипотиреоз;
  • злокачественные опухоли;
  • скрытое кровотечение (желудочно-кишечное, гинекологическое).

Уровень железа, мкмоль/л

Женщины, > 14 лет

Мужчины, > 14 лет

  • дефицит фолиевой кислоты;
  • дефицит витамина В12;
  • алкоголизм;
  • недостаточность питания;
  • нарушение всасывания.

Норма фолиевой кислоты в сыворотке крови - 3 - 17 нг/мл.

Цианокобаламин. Кобаламин. Витамин В12. В12-дефицитная анемия

Витамин В12 (или цианокобаламин, кобаламин) - уникальный витамин в организме человека, содержащий незаменимые минеральные элементы. Большое количество витамина B12 необходимо селезенке и почкам, несколько меньше поглощается мышцами. Кроме того, витамин В12 содержится в молоке матери.

Дефицит витамина B12 приводит к серьезным, опасным для здоровья последствиям - развивается B 12-дефицитная анемия. Особенно подвержены В12 анемии вегетарианцы и любители диет, исключившие из свого рациона яйца и молочные продукты.

При недостатке цианокобаламина происходят изменения в клетках костного мозга, полости рта, языка и желудочно-кишечного тракта, что ведет к нарушению кроветворения, появлению симптомов неврологических расстройств (психические расстройства, полиневриты, поражение спинного мозга).

Норма витамина Б 12: 180 - 900 пг/мл

Ферменты. Биохимический анализ крови

Для оценки функционального состояния эндокринных желез определяют содержание в крови гормонов, для изучения специфической активности органов - содержание ферментов, для диагностики гиповитаминозов - содержание витаминов.

В биохимии крови на нарушение функции печени указывает повышение таких показателей, как АЛТ, ACT, ПТ, щелочная фосфатаза, холинэстераза. При определении биохимии крови изменение уровня амилазы говорит о патологии поджелудочной железы. Повышение уровня креатинина, определяемого при биохимическом анализе крови, характерно для почечной недостаточности. На инфаркт миокарда указывает повышение концентрации КФК-МВ, ДЦГ.

Ферменты - аланинаминотрансфераза (АлАТ), аспартатаминотрансфераза (АсАТ), гамма-глутамилтрансфераза (Гамма-ГТ), амилаза, амилаза панкреатическая, лактат, креатинкиназа, лактатдегидрогеназа (ЛДГ), фосфатаза щелочная, липаза, холинэстераза.

Это фермент, вырабатываемый клетками печени, скелетных мышц и сердца.

Повышение уровня его содержания может быть вызвано:

  • разрушением клеток печени при некрозе, циррозе, желтухе, опухоли, употреблении алкоголя;
  • инфарктом миокарда;
  • разрушением мышечной ткани в результате травм, миозита, мышечной дистрофии;
  • ожогами;
  • токсическим действием на печень лекарств (антибиотиков и др.).

Норма АЛТ (норма АлАТ) - для женщин - до 31 Ед/л, для мужчин норма АлАТ - до 41 Ед/л.

Фермент, вырабатываемый клетками сердца, печени, скелетных мышц и эритроцитами. Его содержание может быть повышено, если имеются:

  • повреждение печеночных клеток (гепатит, токсическое повреждение лекарствами, алкоголь, метастазы в печень);
  • сердечная недостаточность, инфаркт миокарда;
  • ожоги, тепловой удар.

Норма АСТ в крови - для женщин - до 31 Ед/л, для мужчин норма АсАТ - до 41 Ед/л.

Этот фермент вырабатывается клетками печени, а также клетками поджелудочной, предстательной и щитовидной желез.

Если выявлено повышение его содержания, в организме могут быть:

  • заболевания печени (алкоголизм, гепатит, цирроз, рак);
  • заболевания поджелудочной железы (панкреатит, сахарный диабет);
  • гипертиреоз (гиперфункция щитовидной железы);
  • рак предстательной железы.

В крови здорового человека содержание гаммы ГТ незначительно. Для женщин норма ГГТ - до 32 Ед/л. Для мужчин - до 49 Ед/л. У новорожденных норма гаммы ГТ в 2-4 раза выше, чем у взрослых.

Фермент амилаза вырабатывают клетки поджелудочной и околоушной слюнной желез. Если повышается уровень его содержания, это означает:

  • панкреатит (воспаление поджелудочной железы);
  • паротит (воспаление околоушной слюнной железы).
  • недостаточности функции поджелудочной железы;
  • муковисцидозе.

Норма альфа-амилазы в крови (норма диастазы) -Ед/л. Нормы амилазы панкреатической - от 0 до 50 Ед/л.

Молочная кислота. Образуется в клетках в процессе дыхания, особенно много в мышцах. При полноценном снабжении кислородом не накапливается, а разрушается до нейтральных продуктов и выводится. В условиях гипоксии (недостатка кислорода) накапливается, вызывает чувство мышечной усталости, нарушает процесс тканевого дыхания.

  • прием пищи;
  • интоксикация аспирином;
  • введение инсулина;
  • гипоксия (недостаточное снабжение кислородом тканей: кровотечение, сердечная недостаточность, дыхательная недостаточность, анемия);
  • инфекции (пиелонефрит);
  • третий триместр беременности;
  • хронический алкоголизм.

Повышение его содержания может быть признаком следующих состояний:

  • инфаркт миокарда;
  • повреждения мышц (миопатии, миодистрофии, травмы, хирургические вмешательства, инфаркты);
  • беременность;
  • алкогольный делирий (белая горячка);
  • черепно-мозговая травма.

Нормы креатинкиназы МВ в крови - 0-24 Ед/л.

Внутриклеточный фермент, образующийся во всех тканях организма.

Повышение его содержания бывает при:

  • разрушении клеток крови (серповидноклеточная, мега-лобластическая, гемолитическая анемии);
  • заболеваниях печени (гепатиты, цирроз, механическая желтуха);
  • повреждениях мышц (инфаркт миокарда);
  • опухоли, лейкемии;
  • повреждениях внутренних органов (инфаркт почки, острый панкреатит).

Норма ЛДГ для новорожденных - до 2000 Ед/л. У детей до 2 лет активность ЛДГ по-прежнему высока - 430 Ед/л, от 2 до 12 - 295 Ед/л. Для детей старше 12 лет и у взрослых норма ЛДГ - 250 Ед/л.

Фермент, образующийся в костной ткани, печени, кишечнике, плаценте, легких. Уровень его содержания повышается, когда имеют место:

  • беременность;
  • повышенный обмен в костной ткани (быстрый рост, заживление переломов, рахит, гиперпаратиреоз);
  • заболевания костей (остеогенная саркома, метастазы рака в кости, миеломная болезнь);
  • заболевания печени, инфекционный мононуклеоз.
  • гипотиреозе (гипофункции щитовидной железы);
  • анемии (малокровии);
  • недостатке витамина С (цинга), В12, цинка, магния;
  • гипофосфатаземии.

Норма щелочной фосфатазы в крови женщины - до 240 Ед/л, мужчины - до 270 Ед/л. Щелочная фосфатаза влияет на рост костей, поэтому у детей ее содержание выше, чем у взрослых.

Фермент, образующийся в печени. Основное использование - для диагностики возможного отравления инсектицидами и оценки функции печени.

Повышение его содержания может говорить о:

  • отравление фосфорорганическими соединениями;
  • патология печени (гепатит, цирроз, метастазы в печень);
  • дерматомиозит.

Такое снижение характерно также для состояния после хирургических операций.

Норма холинэстеразы - 5300 -Ед/л

Фермент, расщепляющий жиры пищи. Выделяется поджелудочной железой. При панкреатите более чувствительна и специфична, чем амилаза, при простом паротите, в отличие от амилазы, не изменяется.

  • панкреатит, опухоли, кисты поджелудочной железы;
  • желчная колика;
  • перфорация полого органа, непроходимость кишечника, перитонит.

Норма липазы для взрослых - 0 до 190 Ед/мл.

БЕЛОК. Биохимический анализ крови

Белки - главный биохимический критерий жизни. Они входят в состав всех анатомических структур (мышцы, клеточные мембраны), переносят вещества по крови и в клетки, ускоряют течение биохимических реакций в организме, распознают вещества - свои или чужие и защищают свои от чужих, регулируют обмен веществ, удерживают жидкость в кровеносных сосудах и не дают ей уходить в ткани.

Белки - альбумин, общий белок, С-реактивный белок, гликированный гемоглобин, миоглобин, трансферрин, ферритин, железосвязывающая способность сыворотки (ЖСС), ревматоидный фактор.

Белки синтезируются в печени из аминокислот пищи. Общий белок крови состоит из двух фракций: альбумины и глобулины.

Повышение уровня содержания белка (гиперпротеинемия) говорит о наличии:

  • обезвоживания (ожоги, диарея, рвота - относительное повышение концентрации белка за счет снижения объема жидкости);
  • миеломной болезни (избыточная продукция гамма-глобулинов).

Снижение уровня содержания белка называется гипопротеинемией и бывает при:

  • голодании (полном или только белковом - строгом вегетарианстве, нервной анорексии);
  • заболеваниях кишечника (нарушении всасывания);
  • нефротическом синдроме;
  • кровопотере;
  • ожогах;
  • опухолях;
  • хроническом и остром воспалении;
  • хронической печеночной недостаточности (гепатите, циррозе).

Нормы белка в крови

Норма общего белка, г/л

Альбумины - один из двух типов общего белка; основная их роль - транспортная.

Истинной (абсолютной) гиперальбуминемии не бывает.

Относительная возникает при снижении общего объема жидкости (обезвоживании).

Снижение (гипоальбуминемия) совпадает с признаками общей гипопротеинемии.

Уровень альбумина, г/л

Образуется из гемоглобина при долго повышенном уровне глюкозы (гипергликемии) - в течение не менее 120 дней (длительность жизни эритроцита). Используется для оценки компенсированности сахарного диабета, долговременного контроля эффективности лечения.

Норма гемоглобина, г/л - Мужчины - 135-160, Женщины - 120-140.

Защитный фактор против атеросклероза. Нормальный уровень его содержания в сыворотке крови зависит от возраста и пола.

Повышение уровня содержания апобелка А1 наблюдается при:

  • генетические особенности липидного обмена;
  • ранний атеросклероз коронарных сосудов;
  • некомпенсированный сахарный диабет;
  • курение;
  • пища, богатая углеводами и жирами.

Фактор риска атеросклероза. Нормальный уровень в сыворотке зависит от пола и возраста.

Повышение уровня апобелка В бывает при:

  • злоупотреблении алкоголем;
  • приеме препаратов стероидных гормонов (анаболики, глюкокортикоиды);
  • раннем атеросклерозе коронарных сосудов;
  • заболеваниях печени;
  • беременности;
  • сахарном диабете;
  • гипотиреозе.

Снижение его содержания вызывают:

  • диета с низким содержанием холестерина;
  • гипертиреоз;
  • генетические особенности липидного обмена;
  • потеря веса;
  • острый стресс (тяжелая болезнь, ожоги).

АПО-В норма содержания в плазме крови - 0,8-1,1 г/л.

Белок мышечной ткани, отвечает за ее дыхание.

Повышение его содержания бывает при следующих состояниях:

  • инфаркт миокарда;
  • уремия (почечная недостаточность);
  • мышечное перенапряжение (спорт, электроимпульсная терапия, судороги);
  • травмы, ожоги.

Снижение уровня содержания миоглобина вызывают аутоиммунные состояния, когда вырабатываются аутоантитела против миоглобина; это бывает при полимиозите, ревматоидном артрите, миастении.

Норма миоглобина, мкг/л - женщины 12-76, мужчины 19-92.

Одна из фракций общей креатинкиназы.

Повышение ее уровня указывает на:

  • острый инфаркт миокарда;
  • острое повреждение скелетных мышц.

Нормы креатинкиназы МВ в крови - 0-24 Ед/л

Специфический сократительный белок сердечной мышцы. Повышение его содержания вызывается:

  • инфарктом миокарда;
  • ишемической болезнью сердца.

Белок, в составе которого железо находится в депо, запасаясь на будущее. По его уровню можно судить о достаточности запасов железа в организме. Повышение содержания ферритина может указывать на:

  • избыток железа (некоторые заболевания печени);
  • острый лейкоз;
  • воспалительный процесс.

Снижение уровня содержания этого белка означает дефицит в организме железа.

Норма ферритина в крови для взрослых мужчин -мкг/л. Для женщин норма анализа крови на ферритин - 10 - 120 мкг/л.

Трансферрин - белок в плазме крови, основной переносчик железа.

Насыщение трансферрина происходит благодаря его синтезу в печени и зависит от содержания железа в организме. С помощью анализа трансферрина можно оценить функциональное состояние печени.

Повышенный трансферрин - симптом дефицита железа (предшествует развитию железодефицитной анемии в течение нескольких дней или месяцев). Повышение трансферрина происходит вследствие приема эстрогенов и оральных контрацептивов.

Пониженный трансферрин в сыворотке крови - повод для врача поставить следующий диагноз: хронические воспалительные процессы, гемохроматоз, цирроз печени,

ожоги, злокачественные опухоли, избыток железа.

Повышение трансферрина в крови происходит также в результате приема андрогенов и глюкокортикоидов.

Норма трансферрина в сыворотке крови - 2,0-4,0 г/л. Содержание трансферрина у женщин на 10% выше, уровень трансферрина увеличивается при беременности и снижается у пожилых людей.

Низкомолекулярные азотистые вещества. Биохимический анализ крови

Низкомолекулярные азотистые вещества - креатинин, мочевая кислота, мочевина.

Продукт обмена белков, удаляющийся почками. Часть мочевины остается в крови.

Если в крови повышено содержание мочевины, это свидетельствует об одном из следующих патологических процессов:

  • нарушение функции почек;
  • непроходимость мочевыводящих путей;
  • повышенное содержание белка в пище;
  • повышенное разрушение белка (ожоги, острый инфаркт миокарда).

В случае снижения уровня содержания мочевины в организме могут иметь место:

  • белковое голодание;
  • избыточное потребление белка (беременность, акромегалия);
  • нарушение всасывания.

Норма мочевины у детей до 14 лет - 1,8-6,4 ммоль/л, у взрослых - 2,5-6,4 ммоль/л. У людей старше 60 лет норма мочевины в крови - 2,9-7,5 ммоль/л.

Креатинин - как и мочевина, продукт обмена белков, выводящийся почками. В отличие от содержания мочевины, содержание креатинина зависит не только от уровня содержания белка, но от интенсивности его обмена. Таким образом, при акромегалии и гигантизме (повышенный синтез белка) уровень его содержания растет, в отличие от уровня содержания мочевины. В остальном причины изменения уровня его содержания те же, что для мочевины.

Норма креатинина в крови женщины: 53-97 мкмоль/л, мужчины - 62-115 мкмоль/л. Для детей до 1 года нормальный уровень креатинина - 18-35 мкмоль/л, от года до 14 лет - 27-62 мкмоль/л.

Мочевая кислота - продукт обмена нуклеиновых кислот, выводящийся из организма почками.

  • подагры, так как происходит нарушение обмена нуклеиновых кислот;
  • почечной недостаточности;
  • миеломной болезни;
  • токсикоза беременных;
  • употребления пищи, богатой нуклеиновыми кислотами (печень, почки);
  • тяжелой физической работы.
  • болезни Вильсона-Коновалова;
  • синдроме Фанкони;
  • диете, бедной нуклеиновыми кислотами.

Норма мочевой кислоты для детей до 14 лет - 120 - 320 мкмоль/л, для взрослых женщин - 150 - 350 мкмоль/л. Для взрослых мужчин норма уровня мочевой кислоты - 210 - 420 мкмоль/л.

С удовольствием разместим Ваши статьи и материалы с указанием авторства.

Информацию присылайте на почту

Ключевые слова: Биохимический анализ крови – расшифровка, Киев

Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.

Вконтакте

Одноклассники

Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины - Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.

Строение АТФ

Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина - производного аденина и рибозы . Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1′-углеродом рибозы при помощи β-N-гликозидной связи. К 5′-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.

Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ - это особое соединение, содержащее связи, при которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.

Вот как записываются эти химические реакции :

  • 1). АТФ + вода→АДФ + фосфорная кислота + энергия;
  • 2). АДФ + вода→АМФ + фосфорная кислота + энергия.

Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.

Роль АТФ в живом организме. Её функции

Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.

Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ , таких, как:

Как образуется АТФ в организме?

Синтез аденозинтрифосфорной кислоты идёт постоянно , т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества - примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.

В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.

Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата) . Эта химическая реакция выглядит следующим образом:

АДФ + фосфорная кислота + энергия→АТФ + вода.

Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:

Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.

Вывод

Аденозинтрифосфорная кислота - это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!

Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.

Выпускается АТФ в форме сублингвальных таблеток и раствора для внутримышечного/внутривенного введения.

Активным веществом АТФ является натрия аденозинтрифосфат, молекулу которого (аденозин-5-трифосфата) получают из мышечной ткани животных. Кроме того, в ее состав входят ионы калия и магния, гистидин – важная аминокислота, принимающая участие в восстановлении поврежденных тканей и необходимая для правильного развития организма в период его роста.

Роль АТФ

Аденозинтрифосфат – макроэргическое (способное накапливать и передавать энергию) соединение, которое образуется в организме человека в результате различных окислительных реакций и в процессе расщепления углеводов. Содержится оно практически во всех тканях и органах, но больше всего – в скелетной мускулатуре.

Роль АТФ – улучшение метаболизма и энергообеспечения тканей. Расщепляясь на неорганический фосфат и АДФ, аденозинтрифосфат высвобождает энергию, которая используется для сокращения мышц, а также для синтеза белка, мочевины и промежуточных продуктов обмена.

Под влиянием этого вещества происходит расслабление гладкой мускулатуры, снижается артериальное давление, улучшается проведение нервных импульсов, повышается сократимость миокарда.

Учитывая вышесказанное, недостаток АТФ становится причиной ряда заболеваний, таких как дистрофия, нарушение кровообращения головного мозга, ишемическая болезнь сердца и др.

Фармакологические свойства АТФ

Благодаря оригинальной структуре молекула аденозинтрифосфата имеет характерное только для нее фармакологическое действие, не присущее никакому более из химических компонентов. АТФ нормализует концентрацию ионов магния и калия, при этом снижает концентрацию мочевой кислоты. За счет стимулирования энергетического обмена он улучшает:

  • Активность ионотранспортных систем мембран клеток;
  • Показатели липидного состава мембран;
  • Антиоксидантную защитную систему миокарда;
  • Активность мембранозависимых ферментов.

Благодаря нормализации метаболических процессов в миокарде, обусловленных гипоксией и ишемией, АТФ оказывает антиаритмическое, мембраностабилизирующее и противоишемическое действие.

Также этот препарат улучшает:

  • Сократительную способность миокарда;
  • Функциональное состояние левого желудочка;
  • Показатели периферической и центральной гемодинамики;
  • Коронарное кровообращение;
  • Сердечный выброс (благодаря чему повышается физическая работоспособность).

В условиях ишемии роль АТФ – уменьшение потребления миокардом кислорода, активация функционального состояния сердца, в результате чего уменьшается одышка во время физической активности и сокращается частота приступов стенокардии.

У пациентов с суправентрикулярной и пароксизмальной наджелудочковой тахикардией, у больных с мерцанием и трепетанием предсердий данный препарат восстанавливает синусовый ритм и уменьшается активность эктопических очагов.

Показания к применению АТФ

Как указано в инструкции к АТФ, препарат в таблетках назначают при:

  • Ишемической болезни сердца;
  • Постинфарктном и миокардитическом кардиосклерозе;
  • Нестабильной стенокардии;
  • Суправентрикулярной и пароксизмальной наджелудочковой тахикардии;
  • Нарушениях ритма различного генеза (в составе комплексного лечения);
  • Вегетативных расстройствах;
  • Гиперурикемии разного происхождения;
  • Микрокардиодистрофии;
  • Синдроме хронической усталости.

Применение АТФ внутримышечно целесообразно при полиомиелите, мышечной дистрофии и атонии, пигментной дегенерации сетчатки, рассеянном склерозе, слабости родовой деятельности, заболеваниях периферических сосудов (облитерирующем тромбангиите, болезни Рейно, перемежающейся хромоте.

Внутривенно препарат вводят с целью купирования пароксизмов наджелудочковых тахикардий.

Противопоказания к применению АТФ

В инструкции к АТФ указано, что медикамент не следует применять пациентам с повышенной чувствительностью к какому-либо из его компонентов, детям, беременным и кормящим женщинам, одновременно с большими дозами сердечных гликозидов.

Также не назначают его больным, у которых диагностированы:

  • Гипермагниемия;
  • Гиперкалиемия;
  • Острый инфаркт миокарда;
  • Тяжелая форма бронхиальной астмы и другие воспалительные заболевания легких;
  • AV-блокадой второй и третьей степени;
  • Геморрагический инсульт;
  • Артериальная гипотензия;
  • Тяжелая форма брадиаритмии;
  • Декомпенсированная сердечная недостаточность;
  • Синдром пролонгации QT.

Способ применения АТФ и режим дозирования

АТФ в форме таблеток принимают 3-4 раза в день сублингвально вне зависимости от приема пищи. Разовая дозировка может варьироваться от 10 до 40 мг. Длительность лечения определяет лечащий врач, но обычно она составляет 20-30 дней. В случае необходимости через 10-15 дней перерыва курс повторяют.

При острых сердечных состояниях разовую дозу принимают каждые 5-10 минут до исчезновения симптомов, после чего переходят на стандартный прием. Максимальная суточная дозировка в этом случае составляет 400-600 мг.

Внутримышечно АТФ вводят по 10 мг 1% раствора один раз в сутки в первые дни лечения, затем в этой же дозе – дважды в сутки или по 20 мг – один раз. Курс терапии, как правило, длится от 30 до 40 дней. При необходимости через 1-2 месяца перерыва лечение повторяют.

Внутривенно вводят 10-20 мг препарата в течение 5 секунд. Если требуется, через 2-3 минут делают повторную инфузию.

Побочные действия

В отзывах об АТФ говорится, что таблетированная форма препарата может провоцировать аллергические реакции, тошноту, чувство дискомфорта в эпигастрии, а также развитие гипермагниемии и/или гиперкалиемии (при длительном и неконтролируемом приеме).

Кроме описанных побочных эффектов, при применении внутримышечно АТФ, по отзывам, может стать причиной головной боли, тахикардии и усиления диуреза, при внутривенном введении – тошноты, гиперемии лица.

Популярные статьи Читать больше статей

02.12.2013

Все мы много ходим в течение дня. Даже если у нас малоподвижный образ жизни, мы все равно ходим – ведь у нас н...

608206 65 Подробнее

10.10.2013

Пятьдесят лет для представительниц прекрасного пола – это своеобразный рубеж, перешагнув который каждая вторая...

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ - одного из основных источников энергии.

АТФ - универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков

Рибоза - углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин - азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты . К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже - 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ - одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы - это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата - это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза - анаэробный этап В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С 6 Н 12 О 6 + 2АДФ + 2Фн --> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

Дыхание клетки

Окислительное фосфорилирование - это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования - это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза - основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

В клетке около 1 млрд молекул АТФ.

Каждая молекула живет не больше 1 минуты.

Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

Синтез пуриновых оснований происходит во всех клетках организма , главным образом в печени. Исключение составляют эритроциты, полиморфноядерные лейкоциты, лимфоциты.

Условно все реакции синтеза можно разделить на 4 этапа:

1. Синтез 5"-фосфорибозиламина

Первая реакция синтеза пуринов заключается в активации углерода в положении С 1 рибозо-5-фосфата, это достигается синтезом 5-фосфорибозил-1-дифосфата (ФРДФ). Рибозо-5-фосфат является тем якорем, на основе которого синтезируется сложный пуриновый цикл.

Вторая реакция – это перенос NH 2 -группы глутамина на активированный атом С 1 рибозо-5-фосфата с образованием 5"-фосфорибозиламина . Указанная NH 2 -группа фосфорибозиламина уже принадлежит будущему пуриновому кольцу и ее азот будет атомом номер 9.

Реакции синтеза 5"-фосфорибозиламина

Параллельно фофорибозилдифосфат используется при синтезе пиримидиновых нуклеотидов . Он реагирует с оротовой кислотой и рибозо-5-фосфат связывается с ней, образуя оротидилмонофосфат.

2. Синтез инозинмонофосфата

5-фосфорибозиламин вовлекается в девять реакций, и в результате образуется первый пуриновый нуклеотид – инозинмонофосфорная кислота (ИМФ). В этих реакциях источниками атомов пуринового кольца являются глицин , аспартат , еще одна молекула глутамина , углекислый газ и производные тетрагидрофолиевой кислоты (ТГФК). В целом на синтез пуринового кольца затрачивается энергия 6 молекул АТФ.

3. Синтез аденозинмонофосфата и гуанозинмонофосфата

  1. Гуанозинмонофосфат (ГМФ) образуется в двух реакциях – сначала ИМФ окисляется ИМФ-дегидрогеназой до ксантозилмонофосфата, источником кислорода является вода, акцептором водорода – НАД. После этого работает ГМФ-синтетаза , она использует универсальный клеточный донор NH 2 -групп – глутамин, источником энергии для реакции служит АТФ.
  2. Аденозинмонофосфат (АМФ) также образуется в двух реакциях, но в качестве донора NH 2 -группы выступает аспарагиновая кислота. В первой, аденилосукцинат-синтетазной , реакции на присоединение аспартата используется энергия распада ГТФ, во второй реакции аденилосукцинат-лиаза производит удаление части аспарагиновой кислоты в виде фумарата.

Реакции синтеза АМФ и ГМФ

4. Образование нуклеозидтрифосфатов АТФ и ГТФ.

Синтез ГТФ осуществляется в 2 стадии посредством переноса макроэргических фосфатных групп от АТФ. Синтез АТФ происходит несколько иначе. АДФ из АМФ образуется также за счет макроэргических связей АТФ. Для синтеза же АТФ из АДФ в митохондриях есть фермент АТФ-синтаза , образующий АТФ в реакциях

error: